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Remote sensing data 
and tools to foster… 

inland water 
monitoring 

flood modeling

(e.g. satellite altimetry, SWOT)

Available data and tools for flood 
hazard modelling

Schumann & Domeneghetti, 2016 (HP)



Number of people affected by weather-related disasters (1995-2015)

UNISDR (2015)
United Nation Office for Disaster Risk Reduction 



…in Italy?

20181968-2017

Fatality, missing 
and wounded

Evacuated 
homeless Related to landslidesTotal number of fatalities 

due to inundations

1968-2017 = 592 
2018 = 26

IRPI 2018 – Annual Report



FLOOD HAZARD MODELING 
AT DIFFERENT (LARGE) SCALE 
AND IN POORLY SURVEYED 
AREAS

• Monitoring/modeling/predicting floods at 
the large (regional, continental or global) 
scale is challenging by nature

• Most hydrodynamic models were not 
developed for large scale applications

• Boundary data (river data, inflow, water 
level, floodplain topography, etc.) are 
lacking in many places or are inaccurate

Main challenges



Initiatives and concerns for global flood modeling

 Model conditioning (precipitation, river flows, gauged 
information, etc.) 

 Numerical model computationally efficient

 Model calibration and validation

 Topography

 Bathymetry

 River network characterization

Sampson et al., 2015 (WRR)

Alfieri et al., 2014 (HP)

Dottori et al., 2016

Trigg et al., 2016 (ERL)

Schumann et al., 2016 (GRL)



Initiatives and concerns for global flood modeling
“[…] fluvial (river) flood risk for much of the world is still ‘unmapped’, and even where 

mapping exists, it often uses different and inconsistent

methodologies or datasets across countries and regions.”

Only 30-40% agreement in flood extent

Trigg et al., 2016 (ERL)

return periods (25, 100, 250, 500, 1000 y)

6 models compared in the study were: 
CaMa-Flood, CIMA-UNEP, ECMWF, GLOFRIS, 
JRC, and SSBN (now Fathom Global).1-in-100 year event



Initiatives and concerns for global flood modeling

Bernhofen et al., 2018 (ERL)

Events considered for the 
validation (2) are retrieved from 
the Dartmouth Flood 
Observatory (DFO) archive.
The  DFO uses MODIS imagery to 
capture flood events
globally, and stores them online 
in an open-access
Archive (since 2000).

Overlap of individual global flood model extent for return period flows 
of 25 and 100 years and MODIS observed flood extent



Global Topography data

Digital Elevation Model (DEM) is a fundamental baseline data for many geosciences analysis 
(hydrological modeling, flood modeling, land classification, terrain analysis, etc.)

… in most part of the world spaceborne DEM are usually the only source of topographic data

Error types in spaceborne DEMS

- Vegetation height bias/object bias

- Speckle noise (random noise due
terrain reflection)

- Stripe noise (unrealistic terrain undulation)

- Absolute bias (overall shift)



Global Topography data

Common Global (semi-Global) DEMs

- SRTM3 DEM v2.1
C-band radar interferometry, 90 m res.
(Shattle Radar Topography Mission, 2000)

- AW3D-30m DEM (above 60N)
optical stereoview.

- Viewfinder Panorama DEM
digitized paper map to fill SRTM gap

Overall vertical error might vary from 4.7 m up to 9 
m in different continents [Rodriguez et al., 2006; 

Beck, 2014; Schumann et al., 2014; Yan et al., 2015].
SRTM DEM



Global Topography data

MERIT DEM (Multi-Error-Removed Improved-Terrain DEM)

Obtained by applying multi-component error removal to SRTM3 and AW3D 

http://hydro.iis.u-
tokyo.ac.jp/~yamad
ai/MERIT_DEM/

Yamazaki et al., 2017 (GRL)

New

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/


Global Topography data

Yamazaki et al., 2017 (GRL)



Global Topography data

Modified elevations of DEMS using multiple water body maps to ensure river connectivity 
and to represent small channels

(Pekel et al., 2016)



Global Topography data

Modified elevations of DEMS using multiple water body maps to ensure river connectivity 
and to represent small channels



Global Topography data

To further investigate:
https://gfp.jrc.ec.europa.eu/about-us

Global Flood Partnership

https://gfp.jrc.ec.europa.eu/about-us


Global Topography data

Credits to Dai Yamazaki – from his presentation at the Global Flood Partnership 
meeting – Delft 2018



Global Topography data

OPEN CHALLENGES

- Missing dataset to improve global flood modelling

Global channel bathymetry
Global levee height datasets
Global reservoir, lakes datasets

- Local data integration

Possible integration of high-accuracy topography available 
locally

- Validation data, assimilation

Satellite Altimetry, multi-satellite flood extent (Landsat, 
MODIS, etc.)
Assimilation of these sources



RIVER BATHYMETRY
ESTIMATION

The literature reports several attempts made to handle the absence of bathymetric 
information:

- Geomorphic equations relating river discharge, depth, and water surface width as 
proposed by Leopold and Maddock [1953];

- Using the original SRTM assuming the knowledge of flow rates and concurrent water 
depth during the SRTM acquisition [Alfieri et al., 2013];

- Considering bathymetry as an additional model parameter to be calibrated (Yan et al., 
2015).

- By referring to local available data

- Data assimilation technique combines water surface elevation, h, with hydrodynamic 
models in order to estimate the flow depth and the river discharge at a given section 
[Andreadis et al., 2007; Durand et al., 2008, 2014; Oubanas et al., 2018];

- Referring to satellite images with the use of simplified flow resistance equation (Flow 
Resistance Equation-Based Imaging of River Depths –FREEBIRD- algorithm; Legleiter, 
2015)

- by considering concurrent water surface elevation, h, and width, w, sensed from 
satellite [Mersel et al., 2013]



RIVER BATHYMETRY
ESTIMATION

Channel Bankfull Method: 
it estimates river depth using empirical
relationship for a limited number of gauging
stations [Leopold and Maddock, 1953]

Slope Break Method:
it exploits the linear relationship between
water surface width and water surface
elevation [Mersel et al., 2013]

Domeneghetti, 2016 (WRR)



CHANNEL BANKFULL METHOD - CB

The CB approach investigates the possibility to enhance
the description of the river geometry by exploiting the
A-dbf relationship.
Firstly, the A-dbf relationship is identified for gauged
sections.

low-CBh

bfd

A ~ dbf



The CB approach investigates the possibility to enhance
the description of the river geometry by exploiting the
A-dbf relationship.
Firstly, the A-dbf relationship is identified for gauged
sections.
For all ungauged sections the contributing area is
extracted, in order to find corresponding channel bankfull,
exploiting previous linear relationship.

low-CBh

CHANNEL BANKFULL METHOD - CB

bfd



SLOPE BREAK METHOD - SB

Width, w

hmin

slope-break 
pointdbf

moderate to high flows

low flows

Mersel et al., 2013 (WRR)

Linear relationships among the water surface width, w, 
and water surface elevation , h

SRTM-based section



zminhmin

Width, w

hminzmin

slope-break 
point

moderate to high flows

low flows

SRTM-based section
Real bathymetry
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SLOPE BREAK METHOD - SB

Linear relationships among the water surface width, w, 
and water surface elevation , h



SURVEY AREAS

Po River, Italy (132 km)

Limpopo River, Mozambique (164 

km)

Case study characteristics

1. Mono-corsual stretch

2. River width greater than DEM 

resolution

3. Availability of in-situ 

measurements



PO RIVER: 
AVAILABLE DATA

• LiDAR DEM (resolution 2 m 
integrated with in-situ 
bathymetry measurements)

• SRTM 90
• Mean daily water level and 

discharge at gauged stations
• Altimetry series (ERS and 

ENVISAT)
• Reference hydraulic model 

(quasi-2D)



- Mean daily discharge 
at the upstream section

- 2 m LiDAR for the 
overall study area

- Mean daily water 
elevation at Pontelagoscuro

- 104 river cross-sections

- Satellite altimetry datasets:

VS1

VS2

ERS-2: June 1995-May 2003

ENVISAT: Oct. 2002- Aug. 2010

DATA & BENCHMARK MODEL



River thalweg: 
LiDAR vs CB-approach

R2 = 0.71
ME = 1.18 m

MAE = 2.28 m

CHANNEL BANKFULL METHOD - CB

Linear relationship identified among 

A ~ dbf

Lowering values: 4.37 ÷ 7.13 m 



CHANNEL BANKFULL METHOD -CB

Configuration River Portion Manning’s coefficient (s 

m-1/3)

NS MAE 

(m)

RMSE 

(m)

CB-model Upper reach (VS1) 0.049 0.23 0.86 1.09

Middle reach (VS2) 0.045 0.34 1.10 1.44

Lower reach (PonteLS) 0.052 0.17 1.18 1.38

LiDAR-model Upper reach (VS1) 0.044 0.43 0.70 0.93

Middle reach (VS2) 0.042 0.34 0.76 1.08

Lower reach (PonteLS) 0.025 0.95 0.28 0.35

The image shows the comparison between simulated water levels from CB-model and observed ones for

VS1, VS2 and Pontelagoscuro, respectively.



River cross-sections extraction

- DEM reading (SRTM-MERIT)

- extract river cross sections: the user can exploit a shapefile

or makes the code generate perpendicular equidistant

cross sections respect with a given channel center line.

01

River cross section provided by a shapefileEquidistant cross sections generated by the software

t

SLOPE BREAK METHOD - SB

River Bathymetry Estimation from SaTellite (Ri-BEST) is a Matlab software for river

bathymetry evaluation applying the Slope-Break Method



River channel selection

- Method 1 isolates cross section portion between left 

maximum height and right one; 

- Method 2 identifies the part for which each point has a 

greater elevation than the previous one (on left and right side 

respectively). 

- Using “Manual” method the user can see both two 

selections and choose the best one. 

02

Method 1

Method 2

Manual 



Average lowering estimation

Only cross sections that have at least 5 points under slope-

break point are used to estimate the river bathymetry.03

SRTM 30

Lidar

z

h
min

lowering

Slope-Break point

min



Cross section geometry 

modification

SRTM profile is corrected with two different approach:

triangular and rectangular modification.

04

SRTM 30

Lidar

z

h
min

lowering

min



Estimation of  flow area and 

wetted perimeter

Imposing a water level, flow area and wetted perimeter are

estimate for the new modified cross section.

05

SRTM 30

Lidar

z

h
min

min



SRTM 90 Equidistant sections Historical sections

Channel selection method Manual 

Method

Method

1

Method

2

Manual 

Method

Method

1

Method

2

Average lowering* [m] 8.3 8.8 8.9 8.7 8.5 8.6

SRTM 90 SRTM 90 mod**

Manual 

Method

Method

1

Method 2

ME [m] 8.34 -0.32 -0.15 -0.22

RMSE [m] 9.02 3.45 3.44 3.44

MAE [m] 8.34 2.8 2.75 2.77

PO RIVER RESULTS: 
bathymetry

* Average lowering is the different between LiDAR and SRTM bottoms

** SRTM 90 mod are referred to cross sections modified with Ri-BEST tool



SRTM 90

original

SRTM 90

modified

Lidar 

bottom

Lidar average 

slope

SRTM average 

slope

PO RIVER RESULTS: 
Longitudinal profile



rectangular modification triangular modification

PO RIVER RESULTS: 
Hydraulic radius



PO RIVER RESULTS: 
Hydraulic model

Configuration River Portion Manning’s coefficient (s 

m-1/3)

NS MAE 

(m)

RMSE 

(m)

SB-model Upper reach (VS1) 0.044 0.38 0.68 0.97

Middle reach (VS2) 0.042 0.49 0.97 1.13

Lower reach (PonteLS) 0.040 0.79 0.55 0.70

LiDAR-model Upper reach (VS1) 0.044 0.43 0.70 0.93

Middle reach (VS2) 0.042 0.34 0.76 1.08

Lower reach (PonteLS) 0.025 0.95 0.28 0.35

∆NS = -0.16    ∆MAE = 0.27 m     ∆RMSE = 0.35 m

Calibration

Reference model



PO RIVER RESULTS: 
Hydraulic model

NS = 0.57
RMSE = 0.87 mSB-model

NS = 0.83
RMSE = 0.60 m

LiDAR model NS = 0.76
RMSE = 0.66 m

NS = 0.96
RMSE = 0.32 m

Reference model



 Both CB and SB approaches can enhance the bathymetry 
description of the original SRTM

 SB does not require in-situ data and is more reliable than 
CB approach for the reconstruction of the river geometry 
(MAE = 2.28 m and 1.75 m for CB and SB approach, respectively)

 SB-model performances are of the same order of 
magnitude of the benchmark model based on LiDAR 
(max ∆MAE = ~ 0.30 m)

 Calibrated friction coeff. of the SB-model are physically 
meaningful and reproduce the real characteristics of the 
river

Main findings



Next steps?

“Spaceborne remote sensing observations of inundation extent
contain indirect information about floodplain topography.” Shastry and Durand 2019

Main idea  Because two-dimensional flood models encapsulate floodplain
processes, it is natural to attempt to use such models to help extract topographic 
information from inundation. So, the idea is to infer floodplain topography using inundation
maps, while flood models do the inverse: predict inundation using floodplain topography

Inverse problem solved with Data Assimilation technique

Great potential in the light of the upcoming SWOT mission (see later on)



THE USE OF REMOTE 
SENSING-DERIVED WATER 
SURFACE DATA FOR HYDRAULIC
MODELING



Monitoring of freshwater represents the base for the management of global water
resources. However, the high cost related to the set-up and maintenance of traditional
monitoring networks makes the density of observed data very limited in vast parts of the
globe. On the contrary, the last decades have seen a great evolution on the capability to
acquire remotely sensed observations, providing an increasing availability of spatially
distributed data to be used for monitoring inland water.

Graphical illustration 
of past, current and 
future satellite 
altimetry missions 
for the monitoring of 
the world’s
rivers, lakes and 
reservoirs.

NB: map updated to 2016

Schumann & Domeneghetti, 2016 (HP)



ON THE POTENTIAL OF ALTIMETRY DATA FOR THE CALIBRATION OF HYDRAULIC 
MODELS: A COMPARISON OF DIFFERENT PRODUCTS AND MULTI-MISSION SERIES

 the effect of satellite record length (i.e. number of available measurements) on the 
calibration of the hydraulic model;
 the impact of the uncertainty of altimetry data on the accuracy of model 

calibration;
 comparison of different satellite altimetry products;
 the benefit of multi-mission series, which overcome the low satellite temporal 
resolution.

St
u

d
y 
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s

Temporal distribution of all satellite altimetry missions available up to 2016 (red line): TOPEX/Poseidon, 
Envisat, Envisat EX, JASON-2, SARAL/AltiKa (*ERS-2 data are shown for completeness but not explicitly 
considered in the study).



Synoptic view of altimetry series at the virtual stations identified along the river stretch of interest

CASE STUDY Study reach ~140 km



Satellite sensors and altimetry series considered in this study

CASE STUDY

Mission Abbreviations Version Retracker
Observation 

period

Temporal

resolution [day]

TOPEX/Poseidon TP MGDR-B onboard 1992–2002 10

Envisat E GDR ICE-1 2002–2010 35

Envisat XT EX GDR ICE-1 2010–2012 35

SARAL/AltiKa SA GDR-t onboard 2013–2016 35

JASON 2 J2 GDR ICE-3 2008–2015 10

Multi-mission MM 1995–2016 3



DATA ANALYSIS –
Multi-mission

Tourian et al., 2016 (WRR)



𝜀 𝑥, 𝑡 = ℎ𝑠𝑎𝑡 𝑥, 𝑡 − ℎ𝑜𝑏𝑠(𝑥, 𝑡)

DATA ANALYSIS – single mission
VS n°

data

r2 [-] μ [m] σ [m]

TP120 174 0.77 -0.42 0.75

TP85 158 0.60 0.08 0.70

E22 61 0.85 0.05 0.87

E315 65 0.97 0.30 0.43

EX820 12 0.91 0.50 0.57

EX775 5 -0.35 1.17 1.40

J2-120 261 0.99 0.17 0.30

J2-85 259 0.98 0.19 0.37

SA44 8 0.92 0.14 0.55

SA629 15 0.96 0.40 0.30

Estimated at VS by linearly 
interpolating concurrent 
water elevation measured 
at the gauging stations 

EX775 and SA44 are particularly 
limited in the number of 
measurements. 

Jason 2 outperforms all the other 
satellite products. 



DATA ANALYSIS – multi-mission

VS n° data r2 [-] μ [m] σ [m]

MM120 1411 0.77 0.91 0.96

MM820 1237 0.77 -0.01 0.85

MM22 1235 0.78 0.20 0.89

MM44 1411 0.78 0.14 0.89

MM629 1411 0.78 0.36 0.87

MM315 1236 0.78 0.39 0.87

MM775 1236 0.77 0.79 0.93

MM85 1413 0.77 0.99 0.99

𝜀 𝑥, 𝑡 = ℎ𝑚𝑚 𝑥, 𝑡 − ℎ𝑜𝑏𝑠(𝑥, 𝑡)

Multi-mission series (MM) algorithm connects all VSs hydraulically and statistically and 
densifies the water level time series obtaining a temporal density on average equal to 
3 days 

All multi-mission series 
reports a considerable 
number of observations



DATA ANALYSIS 

t

h

𝒉𝒔𝒂𝒕,𝒎 𝑥 = [ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡1 , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡2 , … , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡𝑚−1 , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡𝑚 ] ∀ 𝑚 = 3, … , 𝐿𝑡𝑜𝑡

𝐿𝑡𝑜𝑡 = total record length of the original satellite dataset (total number of observations)

= generic record length; 

1000 𝒉𝒔𝒂𝒕,𝒎 𝑥 subsets for each m value

𝑚

𝒉𝒐𝒃𝒔,𝒎 𝑥 = [ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡1 , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡2 , … , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡𝑚−1 , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡𝑚 ]



𝒉𝒔𝒂𝒕,𝒎 𝑥 = [ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡1 , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡2 , … , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡𝑚−1 , ℎ𝑠𝑎𝑡,𝑚 𝑥, 𝑡𝑚 ] ∀ 𝑚 = 3, … , 𝐿𝑡𝑜𝑡

𝐿𝑡𝑜𝑡 = total record length of the original satellite dataset 

= generic record length; 

1000 𝒉𝒔𝒂𝒕,𝒎 𝑥 subsets for each m value

𝑚

𝒉𝒐𝒃𝒔,𝒎 𝑥 = [ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡1 , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡2 , … , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡𝑚−1 , ℎ𝑜𝑏𝑠,𝑚 𝑥, 𝑡𝑚 ]

DATA ANALYSIS 

t

h



RESULTS

Calibration results 
for different 
altimetry series 
length: range of 
calibrated 
roughness 
coefficient (grey 
areas) and optimal 
Manning’s value 
(black line) as a 
function of the 
number of satellite 
measurements, m.

~ 1.5 years

~ 3/3.5 years

<1 years

Similar 
results 
using ERS-
2 series

<1 years



RESULTS

Maximum mean 
absolute error 
(MAE) obtained 
calibrating the 
numerical model 
with satellite 
altimetry data 
(black line) and in 
situ water levels 
(red line) as a 
function of data 
length, m.
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RESULTS
Single mission

Synoptic view of the maximum mean absolute error (MAE) of each satellite mission in 
time (*ERS-2 is a recall from a previous investigation): the vertical height of each box is 

defined as the range of the MAE obtained from the calibration considering 𝑚 = 𝐿𝑡𝑜𝑡



RESULTS – Multi-mission
Example of results obtained using Multi-mission series

MM series Original altimetry series Δ = MM – Orig.

VS
n 

[m1/3s-1]

RMSE 

[m]

MAE 

[m]

n [m1/3s-1] RMSE 

[m]

MAE [m] Δn

[m1/3s-1]

Δ-RMSE [m] Δ-MAE 

[m]

MM -E22 0.035 0.94 0.68 0.035 0.83 0.39 0.00 0.11 0.29

MM-E315 0.035 0.89 0.64 0.035 0.46 0.29 0.00 0.43 0.35

MM-EX820 0.038 0.92 0.65 0.042 0.61 0.52 -0.004 0.31 0.13

MM-EX775 0.043 0.96 0.70 0.046 1.53 1.29 -0.003 -0.57 -0.59

MM-TP120 0.052 1.07 0.76 0.035 0.75 0.55 0.017 0.32 0.21

MM-TP85 0.043 1.02 0.73 0.030 0.79 0.64 0.013 0.23 0.09

MM-SA44 0.032 0.96 0.69 0.034 0.72 0.56 -0.002 0.24 0.13

MM-SA629 0.035 0.90 0.65 0.035 0.29 0.25 0.00 0.61 0.4

MM-J2-120 0.052 1.07 0.76 0.040 0.40 0.31 0.012 0.67 0.45

MM-J2-85 0.043 1.02 0.73 0.032 0.48 0.34 0.011 0.54 0.39

Calibration results: 
optimal calibrated 

Manning’s coefficient 
(n), root mean square 

error (RMSE) and 
mean absolute error 

(MAE) obtained from 
the calibration 

process performed
adopting the MM and 

original altimetry 
series (𝑚 = 𝐿tot).



RESULTS
Single Vs. Multi-mission 

ENVISAT Vs. Multi-mission



RESULTS
Single Vs. Multi-mission 

JASON-2 Vs. Multi-mission



INLAND WATER MONITORING -

THE SWOT MISSION AND ITS 

CAPABILITIES FOR LAND 
HYDROLOGY

https://swot.jpl.nasa.gov/

SWOT: Surface Water and 
Ocean Topography

NASA, French, Canadian and United Kingdom 
Space Agencies

To be launched on Sept. 2021, SWOT will 
completely cover the world's oceans and 
freshwater bodies with repeated high-resolution 
elevation measurements.

https://swot.jpl.nasa.gov/


SWOT’s nominal coverage during its 3-year science orbit will include 
measurements between 78°N and 78°S collected over a period of 21 days. Maps 
show the coverage after 3 days (left) and the full 21 days (center) of a complete 
cycle. The graphic at the far right illustrates the number of observations at a given 
latitude during the 21-day repeat period. 

Spatial and temporal coverage

Credits: C. Ubelmann, CLS (left, center) and JPL/NASA (right)



Science requirements and goals

Rodrìguez E. (2015) Surface Water and Ocean Topography mission (SWOT), Science Requirements Document. JPL 
document D-61923. https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf. 

Biancamaria et al., 2016 (SG)

https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf


Science requirements and goals

SWOT mission characteristics



Diagram illustrating the swaths of data that SWOT will collect. The interferometer will 
produce two parallel tracks, with a Nadir track from a traditional altimeter in the gap 
between the swaths. The overall width of the swaths will be approximately 120 km.

Ka-band SAR interferometer (Ka-RIn)

Ka-band, instead of higher 
wavelength bands, has several 

advantages:
finer resolution, shorter distance 
between the two antennas, less 
penetration into soil, snow and 

vegetation.
drawback: sensitivity to 

rain rates > 3 mm/h



Global river coverage

Map of global river database used in this study (GRDC).

Pavelsky et al., 2014 (JH)

Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science. 



Global river coverage
Range of likely limits to 
SWOT’s capability to see 
rivers on each continent. 

GRDC (all)

GRDC (since 2007)

GLOBAL Rivers

AFRICA ASIA

AUSTRALIA EU-ME

N-AMERICA S-AMERICA

Pavelsky et al., 2014 (JH)

SWOT would observe more than 60 % of the 
global sub-basins with an area of 50,000 km2 
given the ability to observe rivers wider than 
100 m. If SWOT can meet the goal of 
observing 50-m-wide rivers, more than 60 % 
of sub-basins with an area of 10,000 km2 
would be observed.



SWOT products

Example of a SWOT orbital pass over the study area: satellite swath (yellow areas), 
Po river reach considered in the study (dark blue), flowing from the gauging 

station (red points) of Borgoforte to the beginning of the river delta (yellow point).

SWOT Hydrology Simulator developed by JPL

The simulation assumes a backscatter coefficient (σ0) of -5 dB 

for land and 10 dB for water.

Fjortoft et al., 2014 (IEEE)

Domeneghetti et. al., 2018 (JH)



SWOT products

Input datasets for the SWOT 
simulator: 2D water depth 
coverage simulated for (a) high, 
(b) mean and (c) low river flow 
conditions (blue scale) and 2 m 
resolution DEM for river 
bathymetry and flood prone 
areas (from brown to green). 
Red boxes identify the same area 
used to show the different flood 
extents for (d) high and (e) low  
flow events, which may 
correspond to very different 
water depths at a given cross-
section (e.g., cross-section S55; 
panel (f)).

Layover illustration for 
embanked river in case of 
incidence angles <<30° and in 
case of (a) large or (b) absent 
lateral floodplains (modified 
from Fjortfot et al., 2014). 



SWOT products

The Ka-band sensor will observe 
water bodies with a ground pixel 
resolution of nearly 6 m in the 
direction of the satellite, and from 
60 m to 10 m (near and far range, 
respectively) in the direction 
perpendicular to the satellite track. 

Some spatial averaging is required: 
pixel cloud  a collection of 
intrinsic pixels plotted with 
reference to a geographical 
coordinate system 

Point classification

All points
Interior 
water 

Water near 
land edge

Land near 
water edge

Land

High flow 0.040  -0.0016 0.378 0.773 0.059

Mean flow -0.354 -0.157 -1.249 -1.489 -0.197

Low flow -0.51 -0.218 -1.365 -1.588 -0.47

Mean error (m) of water surface elevation for different point classifications.

Mission Requirements - Height accuracy: 

< 10 cm; area > 1 km2

< 25 cm; (250 m)2 < water area < 1 km2



SWOT products

Mean error (ME) on water surface 
elevation for interior water (upper 
panel) and water near land edge 
(lower panel) points; points are 
shown in relation to the distance from 
the Nadir orbit 
(negative distances indicate the left 
swath).



Mission requirements 
Slope accuracy: 1.7 cm/km 
(averaging over water area 
> 1 km2)

HR-slope
(m/km)

SWOT-
slope

(m/km)

Δ slope 
SWOT-HR
(cm/km)

Max flow 0.172 0.175 0.2573

Mean
flow

0.0954 0.0855 0.9942

Min flow 0.0948 0.0608 3.394

SWOT products

Water surface profiles for the three considered 
scenarios: (blue) Hec-Ras and (red) SWOT 
water profiles estimated considering an 
averaging area of 1 km2 and a ten-point 
moving average filter



SWOT products

SWOT will provide measurements of surface water elevation, slope, and water mask

SWOT level-2 data products will (likely) include:

 For each pass a water mask with point cloud product with water elevation (and uncertainty)

 Once every repeat cycle: a global water mask following shorelines of observed water bodies in 
vector format (+ e.g., water elevation, wetted area, slope)

 Global one-dimensional vector product with estimated discharge along river reaches (wider than 
50 m)

 Cross-sectional map of all observed water bodies derived from time-varying water elevations 
(yearly)

No real-time consideration for provision of SWOT data product

 Derived product are expected to be provided within 60 days of their collection

…in addition to this product SWOT will be able to characterize changes in cross-sectional area, as well 
as channel morphology through indices such as sinuosity, meander length, and radius, whereas the 
remaining variables, i.e., velocity and depth, will have to be estimated.



SWOT products

There are still many challenges regarding how to manage and process the observations.

What is the best river reach definition strategies?
How does this choice impacts on product accuracy?
What is the accuracy on discharge estimation?

Frasson et al., 2017 (WRR)

- Arbitrary lengths (es. 10km, 15km, etc.)
- River sinuosity
- Inflection points on the water surface profile

How do height, width and 
slope errors propagate to 
discharge estimation?



SWOT products

The hydraulic model of the Po River ran for 12 months, 
simulating discharges from 711 to 4.770 m3/s

1-D hydraulic model ran for 6 months, simulating dis-
charges from 118 to 510 m3/s

SACRAMENTO river - California

Po river - Italy



SWOT products
SWOT will provide an estimate of discharge by means of slope, river width 
and height



SWOT products
SWOT will provide an estimate of discharge by means of slope, river width 
and water surface elevation



SWOT products
SWOT will provide an estimate of discharge by means of slope, river width 
and water surface elevation



Estimated discharge errors caused by the propagation of height, width, and slope errors 
through the discharge equation were often smaller for sinuosity (on average 8.5% for the 
Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) 
reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%).

SWOT products

Hydraulic control method often leads to smaller discharge errors than arbitrary 10 km reaches, 
whereas the sinuosity method, despite its shorter reach lengths, led to discharge errors that 
were comparable to the arbitrary 10 km reaches. 
For the Po River, both sinuosity and hydraulic control methods outperformed the arbitrary 20 
km reaches in 9 out of the 14 evaluated overpasses



APPLICATIONS

“Time–space diagram of 
continental water surface 
processes and SWOT 
observation window.” 

Biancamaria et al., 2016 (SG)

Algorithm Development for SWOT River 

Discharge Retrievals

https://swot.jpl.nasa.gov/project-wood.htm

To further investigates

- Discharge
- lakes and reservoirs
- Transboundary rivers
- Impact of human activities 

on hydrological cycle.
- Data for calibration and 

validation
- Stream-aquifer interactions
- Estuaries dynamics



APPLICATIONS
Discharge estimation

The literature provides a number of different methodologies to estimate the river discharge 
using different variables combinations and assumptions…few examples:  Smith et al., 1996; 
Smith, 1997; Bjerklie et al., 2003, 2005; Kouraev et al., 2004; Dingman and Bjerklie, 2006; 
Bjerklie, 2007; Birkinshaw et al., 2010; Michailovsky et al., 2012, Durand et al, 2016, 
Hagemann et al., 2017, …

1) at-many-stations hydraulic geometry (AMHG) method 
[Gleason and Smith, 2014; Gleason et al., 2014]; 2) GaMo
[Garambois and Monnier, 2015], 3) MetroMan [Durand et al., 
2014], and 4) the novel mean flow and geomorphology (MFG) 
and 5) the mean flow and constant roughness (MFCR) 
algorithms, in addition to 6) an ensemble median product.

Durand et. al., 2016 (WRR)

Other 
methodologies (not 
considered here) are 
available. Among 
those: Data-
Assimilation (DA) 
[Oubanas et al., 2018 

(WRR)], «inverse 
routing» [Pan and 

Wood, 2013 (HESS)], 
Bayesian AMHG 
[Hagemann et al., 2017 

(WRR)].



APPLICATIONS

Tested on 19 rivers worldwide spanning a range of hydraulic and geomorphic 
conditions (data extracted from hydraulic models)



They found at least one 
algorithm able to estimate 
instantaneous discharge to 
within 35% relative root-mean-
squared error (RRMSE) on 14/16 
non-braided rivers despite out-
of-bank flows, multichannel 
planforms, and backwater 
effects. 

APPLICATIONS



APPLICATIONS



APPLICATIONS

Flow hydrograph at the 
gauging station of Sermide
(blue lines) in the
period 2008–2010: vertical 
lines represent an example of 
the timing of the SWOT 
overpasses during a
short period.

total number of satellite 
overpasses: 52, 53, and 
52 referring to orbit 489, 
560 and 211, respectively



APPLICATIONS
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Discharge estimation

Manning equation
- J (friction slope) = S (surface 

slope)
- Large rectangular shape
- j = j-th day of SWOT pass
- i = i-branches of length Δx

Wetted Area, A

average value of the 
minimum wet areas 
recorded for the i-th
branch during the entire 
period of study

Surface Slope, S

Values corrupted
with Gaussian
random errors
(mission 
requiremetns)



APPLICATIONS

FDCs at the gauging station of 
Pontelagoscuro for the three-year period 
based on observed daily data (black 
dashed line) and estimated from SWOT-
like observations, considering different 
river discretizations; grey area represents 
the 90% confidence interval of 
streamflow estimation with ∆x = 20 km; 
black solid lines show FDCs based on 
historical data recorded at the gauging 
stations.



(NO) CONCLUSIONS

Many hydrologic dataset (global or nearly global) are getting available

Global Streamflow Indices and Metadata Archive  (GSIM) – Part 1 and Part 2 



PART 1: station name, river name, coordinates, elevation, drainage area, catchment 
boundary, catchment metadata such as land cover type, soil type, and climate and 
topographic characteristics

The Global Streamflow Indices and Metadata Archive  (GSIM) – Part 1: The production of a daily streamflow archive and 
metadata. Hong Xuan Do, Lukas Gudmundsson, Michael Leonard and Seth Westra1

(NO) CONCLUSIONS



PART 2: a collection of daily streamflow observations at more than 30000 stations 
around the world. Part 2 introduces a set of quality controlled time-series indices 
representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods

Gudmundsson, L., Do, H. X., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, 
time-series indices and homogeneity assessment, Earth Syst. Sci. Data, 10, 787-804, https://doi.org/10.5194/essd-10-787-2018, 2018.

(NO) CONCLUSIONS



(NO) CONCLUSIONS

Many hydrologic dataset (global or nearly global) are getting available

Global Streamflow Indices and Metadata Archive  (GSIM) – Part 1 and Part 2 

Global extent of rivers and streams (Allen, G. H., & Pavelsky, T. M., 2018). 

Global river slope: A new geospatial dataset and global-scale analysis (Cohen et al., 
2018 JH)

More accurate and “hydrologically meaningful” topographic data are coming out 
(see MERIT and HydroMERIT)

…the same for observations useful for model calibration and validation (see e.g., 
rainfall patterns, altimetry, satellite-derived inundation extent…)

…new models with higher computational efficiency

But with some drawbacks… in terms of uncertainties and accuracy in both 
data and large scale model results
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