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T
Return period

(years)

P(h>h’)
Exceedance
probability

INTRODUCTION: FREQUENCY ANALYSIS OF EXTREMES

The return period is the inverse of the probability of a rainfall depth to be exceeded in a year. 
On average, a T-year rainfall depth is exceeded once in T years.

h
Rainfall depth

(mm)

T =
1

P(h > h′)
=

1
1 − F h

Non-exceedance probability
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1 Dalrymple, 1960

 THE INDEX METHOD1

Introduction: frequency analysis of rainfall extremes

h
Rainfall depth

(mm)

T
Return period

(years)IDF curves

ℎ𝑑𝑑,𝑇𝑇 = �ℎ𝑑𝑑 ⋅ 𝐾𝐾 𝑇𝑇 = 𝑎𝑎 ⋅ 𝑑𝑑𝑛𝑛 ⋅ 𝐾𝐾(𝑇𝑇) Growth curve

Index rainfall
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AMS – Annual Maximum Series POT – Peak Over Threshhold

STEPS:

• Compile sample of rainfall depth

2000 2001 2002 2003

• Estimate empirical frequency

• Fitting a distribution function F(h)

• Reading off hT

7Introduction: frequency analysis of rainfall extremes

 ESTIMATING THE GROWTH CURVE



1st STEP: Choice of the distribution function 

2 Parameter: Gumbel
Logistic
Log-normal

3 Parameter: General Extreme Value (GEV)
Generalised Logistic
Pearson Type III
Log Pearson Type III

4 Parameter: Kappa
5 Parameter: Wakeby
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 FITTING A DISTRIBUTION FUNCTION



2nd STEP: Parameters estimation 

Finding the characteristics of the population (all possible future rainfall depths) from the sample
(I.e. the depths observed in the past)

FS(x)

x0

Cumulative frequency 
distribution
of the sample

Distribution function F(xi)

E.g., Gumbel distribution
𝐹𝐹 𝑥𝑥 = exp − exp −

𝑥𝑥 − 𝑐𝑐
𝑑𝑑

Estimate the parameters of the formula so that the Cumulative Density Function of the distribution
fits the empirical cumulative frequency of the data.
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Method of Moments

Moments of the population = moments of the sample

Method of L-Moments

L-moments can summarize data as do conventional moments using linear combinations of the 
ordered observations.

λ1

λ2

λ3

λ4

10Introduction: frequency analysis of rainfall extremes

 PARAMETERS ESTIMATION METHODS
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L-moments of 
the distribution function

Sample L-moments 
of the data series

𝑙𝑙𝑟𝑟+1 = �
𝑘𝑘=0

𝑟𝑟

−1 𝑟𝑟−𝑘𝑘 𝑟𝑟
𝑘𝑘

𝑟𝑟 + 𝑘𝑘
𝑘𝑘 𝑏𝑏𝑘𝑘

𝑏𝑏𝑟𝑟 =
1
𝑛𝑛
�

𝑗𝑗=𝑟𝑟+1

𝑛𝑛
𝑗𝑗 − 1 𝑗𝑗 − 2 … 𝑗𝑗 − 𝑟𝑟
𝑛𝑛 − 1 𝑛𝑛 − 2 … 𝑛𝑛 − 𝑟𝑟

𝑥𝑥𝑗𝑗 :𝑛𝑛

Sample PWME.g., Gumbel distribution
𝐹𝐹 𝑥𝑥 = exp − exp −

𝑥𝑥 − 𝑐𝑐
𝑑𝑑

𝜆𝜆1 = 𝑐𝑐 + 0.5772 ⋅ 𝑑𝑑
𝜆𝜆2 = 𝑑𝑑 ⋅ ln 2

𝑙𝑙1 = 𝑏𝑏0
𝑙𝑙2 = 2 ⋅ 𝑏𝑏1 − 𝑏𝑏0
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 THE L-MOMENTS METHOD
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Because L-moments avoid squaring and cubing the data, their ratios do not suffer from the 
severe bias problems encountered with product moments.

Dimensionless L-moments ratios give further 
information on the characteristic of the 
distribution:

• L-coefficient of variation (L-CV):
τ =  λ2/λ1 =  λ2/µ

• L-coefficient of skewness (L-skewness or L-CA):
τ3 =  λ3/λ2

• L-coefficient of kurtosis (L-kurtosis or L-KUR):
τ4 =  λ4/λ2

12

L-Moments ratio diagram2

2 Hosking and Wallis, 1997Introduction: frequency analysis of rainfall extremes

 THE L-MOMENTS METHOD
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Long temporal
consistency

High degree of 
accuracy at 

point location

Data 
fragmentation

Spatial
variability of 
rainfall fields

Annual maxima for 1-3-6-12 24 hours durations
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WHAT KIND OF DATA?
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DEALING WITH SHORT AND FRAGMENTED RECORDS

14

Rainfall time series are often plagued with missing values creating sporadic and/or continuous
gaps in their records. The fragmented behaviour traces back to the activation and dismissal
of rain gauges, attributable to station relocation, service interruptions, replacement/renewal of
the sensor, changes in the ownership of the station, etc.

The characteristics of the stations (location and elevation, type of sensor, etc.) may also change
before and after the interruptions, with consequent problems in attributing the data to a unique
homogeneous sample. Despite these problems are quite common, even in developed countries,
many practical applications and statistical methodologies have little or no tolerance to missing
values.

Dealing with short and fragmented records



~1990 19 regional agencies
2 provincial agencies

National Hydrographic
and Mareographic

Service (SIMN)

Available upon request
Available online
Limited availability

15Dealing with short and fragmented records

 EXAMPLE: The Italian framework



4688
stations

from 1916
to 2015

1

85

Length of the series (years)

3 Claps et al., 2008

Annual maximum rainfall depths for 1-3-6-12-24 hours durations

2748
stations

from 1916
to 2000

CUBIST 3 I-RED 4

4 Libertino et al., 2018
16Dealing with short and fragmented records

 EXAMPLE: The Italian framework



Two kind of problems:
• Statistical robustness of the estimations from short series
• Significance of the “lost information”

17Dealing with short and fragmented records

Data availability in time in the 
Piemonte regional dataset

Number of series per lenght class in 
the I-RED and CUBIST databases

 EXAMPLE: The Italian framework



 MISSING DATA MECHANISMS5

• MAR (Missing At Random)
Data for a given variable ( e.g., Y) are said to be MAR if the probability of missing data on Y
is unrelated to the value of Y, after accounting for other variables (X).

• MCAR (Missing Completely At Random)
Data on Y are said to be MCAR if the probability of missing data on Y is unrelated to the
value of Y or any values of other variables (X) in a data set.

• MNAR (Missing Not At Random)
Data on Y are said to MNAR if the probability of missing data on Y is related to value of Y or
any values of other variables in a data set

5 Little and Rubin, 2002 18Dealing with short and fragmented records

Rainfall series missing data can be often attributed to the second classes (MCAR): the number
and temporal occurrence of gaps (missing) in precipitation data a site (i.e., rain gauge) are not
dependent on the data at the site or any other sites.



 HANDLING MISSING DATA6

 Often complex, computationally
demanding, and can lead to errors
when based on non-robust
assumptions.

• Omitting missing records (OMR)
Procedures based on only
complete records.

• Infilling missing records (IMR)
Missing records are infilled and
resultant complete data are
analyzed by standard methods.

• Accomodating missing records (AMR)
Procedures that use the series
containing missing records
(without infilling).

6 Teegavarapu, 2012

 Often not suitable, for the
significant loss of information

 For the robustness of the
estimates usually a minimum length
threshold on the number of valid
data has to be set.

19Dealing with short and fragmented records
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 INFILLING MISSING RECORDS

STRONG TEMPORAL DEPENDENCE
or
NORMALLY DISTRIBUTED

STRONG SPATIAL DEPENDENCE

Temporal interpolation

Spatial interpolation

e.g., daily streamflow, total annual rainfall

e.g., precipitation data at multiple sites

When the gaps are frequent and systematic and when data show low 
auto-correlation in time, this approach is not effective.

20Dealing with short and fragmented records



 THE CHAIN OF RAINFALL FREQUENCY ANALYSIS WITH FRAGMENTED RECORDS

Data infilling

AMR
Dataset

At-gauge frequency analysis

And what 
happens
between

rain
gauges? 

21

ℎ𝑇𝑇,𝑑𝑑 = �ℎ𝑑𝑑 ⋅ 𝐾𝐾(𝑇𝑇)

Dealing with short and fragmented records



 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)

SPATIAL VARIABILITY OF RAINFALL FIELDS

GENOVA, 4 October 2010 7

7 Onorato et al., 2011

Duration (h) Rain Gauge Rainfall (mm) Return period (years)

1 Il Pero 140 >500

3 Monte Gazzo 243 >500

6 Monte Gazzo 396 >500

12 Monte Gazzo 411 >500

24 Monte Gazzo 411 200

 Maximum
rainfall depths
recorded during
the event at the
regional gauge
network.

22Spatial variability of rainfall fields



Genova

23

Cumulative rainfall depth from 4 to 16 UTC
04/10/2010 interpolated with IDW.
Rainfall estimated from the regional weather radars
from 6 to 7 UTC 04/10/2010



 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)

Spatial variability of rainfall fields

GENOVA, 4 October 2010



Is the western part of 
the city more prone to 

the development of 
extreme rainstorm
than the eastern? 

EVENT: GENOVA, 4 October 2010

24

Annual mixima for 12 hours duration.

Spatial variability of rainfall fields

 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)
Assessing storm hazard at the urban scale
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 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)
The developement of MCSs in the Liguria sea

GENOVA, 9 October 2014 8 - 21.00 UTC

8 Onorato et al., 2014

Equivalent potential temperature at 1000 hPa 1-hour total radar estimated rainfall 

25Spatial variability of rainfall fields



New convective cells continually
regenerate at approximately the
same rate at which the older ones
are advected away. Regional radar
and satellite imagery frequently
reveal these stationary or
backward regenerative systems
that assume a characteristic V-
shape 9

Cold
air MCS - Back-Building multicell storm

9 Fiori et al., 2014 26Spatial variability of rainfall fields

 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)
The developement of MCSs in the Liguria sea



Cinque Terre (25/10/11)

Brugnato 472 mm/6h

Genova (4/11/2011)

Vicomorasso 181 mm/1h

Genova (9/10/2014)

Genova Geirato 226 mm/3h

27Spatial variability of rainfall fields

 EXAMPLE: Self-regenerating Mesoscale Convective Systems (MCS)
From urban to regional hazard



An IDF relation is basically valid only at the point where it is estimated. Rain gauges are generally
not evenly distributed in space, and they allow only for a point estimation of the parameters of
the rainfall distribution.

To extend estimates to ungauged locations, rainfall data are usually spatialized by:

• REGIONAL ESTIMATION, estimating the IDFs after pooling the available data within
homogeneous areas defined by geographical boundaries, or centred around a location of
interest 2.

• LOCAL ESTIMATION AND SPATIALIZATION, considering the distribution parameters estimated
at the station locations and interpolating them in space with proper algorithms.

The choose of the best technique for spatial frequency analysis depends on different factors
(spatial distribution of the network, length of the available series, aims of the analysis, etc.).

2 Hosking and Wallis, 1997 28

HANDLING THE SPATIAL VARIABILITY

Handling the spatial variability
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E.g., On the one hand the regional approach allows at increasing the available data by pooling
up for the estimation of the growth curve, improving the robustness of the estimates for large
return periods (the English manual FEH - Flood Estimation Handbook10 suggests a station-year
series with length N>5T)…

Reccomended methods for grouth curve estimation when T>27 years 10

10 Reed et al., 1999 29Handling the spatial variability

 CHOOSING THE BEST APPROACH
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…but on the other end the difficulties in identifying homogeneous regions and the arising of
“border effects” due to the regional boundaries often leads to preferring a spatially-smooth
approach.

11 Saikranthi et al., 1999

Delineated homogeneous rainfall regions in India when (a) annual, (b) southwest, and (c) northeast monsoon 
rainfall are used for the correlation analysis.

30Handling the spatial variability

 CHOOSING THE BEST APPROACH
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Under the hypotheses of:
• Hydrological homogeneity of the study region
• Independence of observed events**

Regional rainfall Frequency Analysis (RFA) enables one to substitute space for time.

• RFA improves the estimation accuracy for short samples
If M annual sequences are available over a study area, for which the sample length is
equal to N1, N2, … NM respectively then the size of the regional sample is equal to:
NReg. = N1 + N2 + … + NM

• RFA enables one to predict h(T) in ungauged basins

12 Hosking and Wallis, 1988

** The 2nd hypothesis is often violated in practice, nevertheless the intersite correlation affects 
the variability of the regional estimator, but does not introduce bias7

31Handling the spatial variability

 REGIONAL FREQUENCY ANALYSIS
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Identification of homogeneous regions (pooling-group of sites) within which the flood frequency
distribution is invariant except for a site-dependent scale factor termed index rainfall. Therefore:

ℎ𝑑𝑑,𝑇𝑇 T-year rainfall for duration d
�ℎ𝑑𝑑 index-rainfall scale factor (LOCAL)
𝐾𝐾 𝑇𝑇 dimensionless regional quantile growth factor (REGIONAL)

32
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Handling the spatial variability

 REGIONAL FREQUENCY ANALYSIS

• 1st STAGE: Estimation of the regional growth curve K(T)
• 2nd STAGE: Estimation of the index-rainfall (gauged/ungauged sites)
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1st STAGE : Estimation of the regional growth curve

The traditional station-year method for regional frequency analysis involves pooling all the
data into one long data series, and proceeding under the assumption that the observations
at the stations are independent of each other. An extreme value distribution (“Regional
growth curve”) can then be fitted to this one long series.

33Handling the spatial variability

 REGIONAL FREQUENCY ANALYSIS

Regional
growth curve

1

T

Site M
Site 2

Site 3

Site 1

K(T)

K(T)

T

hT,d

Site M

Site 2
Site 3

Site 1
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1st STAGE : Estimation of the regional growth factor

34Handling the spatial variability

 REGIONAL FREQUENCY ANALYSIS

Approaches for the 
delineation of the 
homogeneous regions:
• Classical approach

Fixed and 
geographically 
contiguous regions 

• Focused pooling 
(Region of Influence -
ROI)

Pooling groups of sites 
identified on the basis 
of hydrological 
similarity with the 
target site8

Ge
og
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m
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e

Cluster analysis Region of InfluenceGeographical
continuity

1 Dalrymple, 1960
13 Burn, 1990
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Gauged target-site
Direct estimation + Log-interpolation

Ungauged target-site
Indirect estimation

E.g., multi-regression model
ℎ𝑑𝑑 =

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℎ𝑖𝑖,𝑑𝑑

ℎ𝑑𝑑 = 𝑎𝑎 ⋅ 𝑑𝑑𝑛𝑛

ℎ𝑑𝑑 = 𝐴𝐴0 + 𝐴𝐴1 ⋅ 𝜔𝜔1 + ⋯+ 𝐴𝐴𝑛𝑛 ⋅ 𝜔𝜔𝑛𝑛 + 𝜖𝜖

with 
parameters of the model
explanatory variables
model residuals

𝐴𝐴𝑖𝑖
𝜔𝜔𝑖𝑖
𝜖𝜖
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2nd STAGE: Estimation of the site-dependent scale factor

Handling the spatial variability

 REGIONAL FREQUENCY ANALYSIS

Moderador
Notas de la presentación
Mathematical relatioships estimating the average intensity over a given timescale for a given frequancy of occurrence.REIN GHEIGES 



Homogeneous
regions

identification

Preliminary hypotesis for the 
identification of the homogeneous

regions based on the sample L-moments
(L-skewnwss and L-CV)

Growth factor

TCEV Distribution
Gerarchical approach for parameters
estimation based on 3 subsequential

levels

Index rainfall
For each region and each duration multi-
parametric model considering morpho-

climatic descriptors.

14 Caporali et al., 2008 36Handling the spatial variability

 EXAMPLE: The Toscana region Regional Frequency Analysis14
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The TCEV Two Component Extreme Value Model15

The maximum rainfall / flows are generated by two different types (mechanisms) of events
(Ordinary and Extraordinary), which generate annual maxima according to the Gumbel distribution.

𝐹𝐹𝑥𝑥 𝑥𝑥 = exp −Λ1𝑒𝑒−𝛼𝛼1𝑥𝑥 ⋅ exp −Λ2𝑒𝑒−𝛼𝛼2𝑥𝑥

15 Rossi et al., 1984 37Handling the spatial variability

 EXAMPLE: The Toscana region Regional Frequency Analysis
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1st level: Estimation of the 𝛼𝛼2e Λ2parameters of the extraordinary component.
Can not be estimated from a single series, or even a few series of data. It is necessary to
consider a very large area (region), Example: Italy, excluding the Po and the Alpine basins.
Indicative width 104 km2

2nd level: Estimation of the Λ1 parameter of the ordinary component.
A less extensive area (sub-region) homogeneous with respect to Λ1 is sufficient for the
estimation. Good estimate of Λ1 can be also obtained from a sufficiently long (local) data set
Indicative width 103 km2

3rd level: Estimation of the index value �ℎ𝑑𝑑.
The annual average varies a lot for each location depending on the climatic and physiographic
parameters characteristic of the location (also short series can provide a good estimate).

Estimation of the growth curve

40Handling the spatial variability

The TCEV Two Component Extreme Value Model
 EXAMPLE: The Toscana region Regional Frequency Analysis
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HYP 1 1 homogeoneous region and 1 homogeneous subregion.
HYP 2 1 homogeoneous region and 3 subregions
HYP 3 3 homogeoneous region coincindent with the 3 subregions
HYP 4 4 homogeoneous region coincindent with the 4 subregions

For all the hypothesis the TCEV parameters have been estimated and tested with :
• Differences between the mean and standard deviation calculated on the observed and 

theoretical series (Monte Carlo)
• Application of the Student's t and of the Wilcoxon’s tests for the mean, χ2 test.
• Application of D-discordance and H-homogeneity tests
• Graphical comparison of the empirical growth curve of the observed with the theoretical one 

of the TCEV model on the Gumbel probability paper.

41Handling the spatial variability

1st STAGE : Identification of the regions and sub-regions
 EXAMPLE: The Toscana region Regional Frequency Analysis
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42Handling the spatial variability

1st STAGE : Identification of the regions and sub-regions
 EXAMPLE: The Toscana region Regional Frequency Analysis

Identified Homogeneous Regions
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43Handling the spatial variability

2nd STAGE : Growth curve estimation
 EXAMPLE: The Toscana region Regional Frequency Analysis

Growth Curves for the Nord Tirrenica region. 
Growth curve for 1h duration is evaluated

separately.
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Regioni θ* Λ* Λ1 η K T Note
1.533 0.075 10.840 3.061 -0.5217+0.501∙Ln T Valida per d=1 ora
2.634 0.438 31.195 4.937 0.2558+0.533∙Ln T Valida per d≥ 3 ore ed 1 g
2.347 0.077 15.956 3.503 -0.9315+0.670∙Ln T Valida per d=1 ora
2.600 0.176 22.755 4.091 -0.3397+0.636∙Ln T Valida per 3 ore≤d≤24 ore
2.129 0.129 19.232 3.769 -0.3705+0.565∙Ln T Valida per 1 giorno
1.010 0.027 22.078 3.698 -0.1529+0.273∙Ln T Valida per 1 ora≤d≤12 ore
2.456 0.127 33.292 4.350 -0.3605+0.565∙Ln T Valida per d=24 ore ed 1 g
1.844 0.100 13.686 3.342 -0.4901+0.552∙Ln T Valida per d=1 ora
2.481 0.718 24.020 5.086 0.4634+0.488∙Ln T Valida per d=3 ora
3.381 0.206 28.325 4.516 -0.4421+0.749∙Ln T Valida per d≥ 6 ore ed 1 g

Nord-Ovest

Centro-Sud

Nord-Tirrenica

Appennino-Amiata
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2nd STAGE : Growth curve estimation
 EXAMPLE: The Toscana region Regional Frequency Analysis

TCEV parameters for the homogeneous regions.

Moderador
Notas de la presentación
Mathematical relatioships estimating the average intensity over a given timescale for a given frequancy of occurrence.REIN GHEIGES 



The index rainfall is estimated throughout the territory of the Toscana Region. For each
homogeneous region and for each duration of rain a multivariate model is used according to the
expression of Caporali et al. (2008):

𝜇𝜇 = 𝑎𝑎0 + 𝑎𝑎1 ⋅ ln 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎2 ⋅ 𝑧𝑧 + 𝑎𝑎3 ⋅ sin
𝐴𝐴𝐴𝐴𝐴𝐴

2
−
𝜋𝜋
2

+ 𝜋𝜋 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑎𝑎4ℎ𝑚𝑚
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3rd STAGE : Index rainfall evaluation
 EXAMPLE: The Toscana region Regional Frequency Analysis

Moderador
Notas de la presentación
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Design rainfall with T=200 years for the 
durations1 hour.

• Robust estimations

• Difficulties in the 
identification of the 
homogeneous regions

• Border effects

46Handling the spatial variability

Results
 EXAMPLE: The Toscana region Regional Frequency Analysis

�ℎ1ℎ𝐾𝐾(200𝑦𝑦)

ℎ1ℎ,200𝑦𝑦

x =

Moderador
Notas de la presentación
Mathematical relatioships estimating the average intensity over a given timescale for a given frequancy of occurrence.REIN GHEIGES 



The rainfall frequency estimation
method of the Flood Estimation
Handbook (FEH) uses the FORGEX
method for rainfall frequency
estimation followed by the fitting of
a depth-duration-frequency (DDF)
model.

16 Reed et al., 1999 47Handling the spatial variability

Towards a «more spatially-smoothed approach» to regional analysis.
 EXAMPLE: The FORGEX method16

Moderador
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FORGEX

INDEX RAINFALL: is the median AM rainfall at the site, spatialized with 
georegression on topographical and other variables.

GROWTH CURVE: data are pooled from a 
hierarchy of expanding circular regions 
centred on the point of interest. Data from 
smaller networks are used to estimate the 
growth curve for short return periods and 
data from the larger networks are used for 
the longer return periods. 
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The methodology
 EXAMPLE: The FORGEX method
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The growth curve is plotted on a “sliced” y-x space. 
Each section, or y-slice, has width 1.0 on the Gumbel 
reduced variate scale. Data points from within the jth
network are only plotted if their plotting position falls 
within the jth section of the growth curve.  

Two kind of series are considered:
• Standardised values from individual stations. 
• Network maximum (netmax) series, defined as the AM 

series of the largest standardized value recorded 
anywhere within the region. 

Because of spatial dependence in the network of rain 
gauges, the plotting positions for the netmax points have 
been modified using a spatial dependence model.

49Handling the spatial variability

The methodology
 EXAMPLE: The FORGEX method

Moderador
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For a given duration, an empirical growth curve consisting of 
concatenated linear segments is fitted to the plotted points 
(both individual and netmax) through a least squares routine. 

• Good use of local data 
and integration with 
regional information for 
large T

• No boundary problems

• The Gumbel distribution
is not always the best 
choice

• The model does not allow 
spatial dependence to vary 
with return period
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Results
 EXAMPLE: The FORGEX method
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Design rainfall for T=50 years for the Liguria region. Quantile estimated at-site
and interpolated with the Inverce Distance Weigth methodology17

When local reliable estimations of the distribution parameters are available the spatialization to 
ungauged area can be carried out using spatial interpolation.

17 Agrillo and Bonati, 2013. 51Handling the spatial variability

 SPATIALIZATION OF LOCAL ESTIMATES
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Estimation of missing data at a single site (base
site) using available data at other observation sites
(control points).

Different interpolation techniques are available. The
best one depends on the characteristics of the
network and of the records5.

• Inverse Distance Weighting Method (also NWS 
method)

• Normal Ratio Method
• Quadrant Method
• Different forms of Kriging
• Trend surface Models

• Local and Global
• Thin Plate Splines

5 Teegavarapu, 2012 52Handling the spatial variability

 SPATIAL INTERPOLATION
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EXACT INEXACTGLOBAL LOCAL

Global VS Local Interpolation Exact VS Inexact Interpolation

53Handling the spatial variability

 SPATIAL INTERPOLATION



Global Local

Deterministic Stochastic Deterministic Stochastic

• Trend surface
(inexact)

• Regression
(inexact)

• Thiessen (exact)
• Inverse Distance Weigthed

(exact)
• Splines (exact)

• Kriging (exact)

Deterministic VS Stochastic Interpolation18

• Deterministic interpolation techniques create surfaces from measured points, based on either 
the extent of similarity or the degree of smoothing. 

• Stochastic interpolation techniques utilize the statistical properties of the measured points, 
quantifying the spatial autocorrelation among measured points and accounting for the spatial 
configuration of the sample points around the prediction location.

18 Teegavarapu and Chandramouli, 2005. 54Handling the spatial variability

 SPATIAL INTERPOLATION



IDW is a deterministic (based on mathematical formulas) interpolation technique.
The assumption made for IDW is that the value of an attribute z at some unvisited point is a 
distance-weighted average of data points occurring within a neighborhood or window surrounding 
the unvisited point. 

𝑧𝑧 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑧𝑧𝑖𝑖 𝑤𝑤𝑖𝑖 =

1
𝑑𝑑𝑖𝑖𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 1
𝑑𝑑𝑖𝑖𝑖𝑖

The methods is simple and has a low computational cost. It assumes that nothing is known about the 
phenomenon being interpolated 
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 DETERMINISTIC INTERPOLATION: INVERSE DISTANCE WEIGHT

Moderador
Notas de la presentación
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Kriging is a stochastic interpolation method, based on the recognition that the spatial variation of 
any continuous attribute is often too irregular to be modelled by a simple mathematical function. 
The variation can be described better by a stochastic surface  based on the relationships among the 
measured points. 

Kriging assumes that the distance or direction between sample points reflects a spatial correlation 
that can be used to explain variation in the surface. The method involves the fits to a mathematical 
function to a specified number of points, or all points within a specified radius, to determine the 
output value for each location. 

Describe the spatial 
variation with 

variogram

Summarize the 
variation with a 

mathematical function

Use the function to 
determine 

interpolation weights

19 Isaaks  and Srivastava, 1989. 56Handling the spatial variability

 STOCHASTIC INTERPOLATION: KRIGING19
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1st STEP: Describe the spatial variation with variogram

The computation of a variogram involves plotting the relationship between the semivariance and 
the lag distance:
• Measure the strength of correlation as a function of distance
• Quantify the spatial autocorrelation

57Handling the spatial variability

 STOCHASTIC INTERPOLATION: KRIGING

EXAMPLE:
• Consider the vector 𝑥𝑥=(x1 x2): coordinates of a point in 

2D and 𝐡𝐡 the vector separating 2 points                               

. xa

. xb
h

D

• The empirical variogram values 𝛾𝛾 𝐡𝐡 are plotted

• Sample values z are compared according to the equation 

𝛾𝛾 𝐡𝐡 = z 𝐱𝐱+𝐡𝐡 −z 𝐱𝐱
2

2
for different lag distances 𝐡𝐡
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Sample variogram cloud Theoretical variogram
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2nd STEP: Summarize the variation with a mathematical function
 STOCHASTIC INTERPOLATION: KRIGING
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SILL
The value where the 
semivariogram first flattens 
off, the maximum level of 
semivariance.

RANGE
The point where the 
semivariogram reaches the 
sill on the lag-axis. Sample 
points that are farther 
apart than range are not 
spatially autocorrelated.

NUGGET
The value of the variogram 
with 0 lag; errors in 
measurements
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2nd STEP: Summarize the variation with a mathematical function
 STOCHASTIC INTERPOLATION: KRIGING
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• The variogram model is used to determine 
the weights for unknown points. 

• The calculation is rather complex, but once 
the weights are calculated, interpolation is 
the same as with IDW 

• Kriging also produces kriging variance map 
which can be used for estimating the 
uncertainty of the interpolation 
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3rd STEP: Use the function to determine interpolation weights
 STOCHASTIC INTERPOLATION: KRIGING
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Different types of kriging according to model structure…
• Ordinary   mean is an unknown value estimated locally
• Simple   mean is a known constant, i.e. average of the entire data set
• Universal  drift in the data is modeled using trend surface analysis and the semivariogram is

calculated using residual values from the surface
…or on the considered data
• Block  estimates an average value of a block
• Indicator  used when the interpolated value is binary
• Co-kriging   two or more interdependent variables are considered. The information 

contained in the associated variable is used to enable better estimations of the other variable.
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 STOCHASTIC INTERPOLATION: KRIGING
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• Problem dealing with 
combined spatio-
temporal fragmentations
(interpolation totally
relies on data)

62Handling the spatial variability

 SPATIALIZATION OF LOCAL ESTIMATES

• Provide estimations 
representative of the 
local variability

Abruzzo 1-hour maxima
for year 2010 interpolated
with Ordinary Kriging
and IDW 



Bull's-eye
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A COMBINED SPACE-TIME APPROACH FOR RFA

20 Libertino et al., 2017

Dealing with extreme rainfall frequency analysis in data-rich environments is often necessary to 
tackle the space-time problems jointly, to preserve a robust statistical approach without 
discarding a significant amount of information which can be essential, especially when large 
return periods estimates are sought.

The “patched kriging”20 techniques allows one to exploit all the information available from the 
recorded series, independently of their length, to provide extreme rainfall estimates in ungauged 
areas. The methodology has a low computational cost and does not require to work with 
stationary or significantly auto-correlated data, as it does not involve any interpolation along the 
time-axis. This feature proves to be particularly effective when dealing with frequent rain gauge 
relocations, allowing on the one hand to maximize the usable information at gauged sites, and 
on the other to extend the analysis to the ungauged ones.

63A combined space-time approach for Regional Frequency Analysis
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> 550 gauge locations in 70 years

SIMN (Piemonte + VdA until 1992)
ARPA Piemonte (from 1987)
ARPA Lombardia (from 1930)

C.F. ARPA Vda (from 1992)
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 EXAMPLE: The Piemonte region
Dataset

A combined space-time approach for Regional Frequency Analysis



21 ARPA Piemonte, 2008

Design rainfall for 
T=100 years 
estimated at-gauge 
with the I-RED 
database and 
interpolated with 
Inverse Distance 
Technique. A 
threshold on the 
series length L=20 
years has been set.

There is no 
clue of the 

storm!

CASELLE (TO), 13 September 200821
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 EXAMPLE: The Piemonte region
The hidden storm of Caselle

A combined space-time approach for Regional Frequency Analysis



Annual maxima for 24 hours duration for the
CASELLE rain gauge in the I-RED database.

Annual maxima for 24 hours
duration for the year 2008.

Radar 
cumulative 
rainfall map
from 6 to 18 

UTC 
13/9/2008
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 EXAMPLE: The Piemonte region
The hidden storm of Caselle

A combined space-time approach for Regional Frequency Analysis



1932
1962

2006

Every year…
Durations 1-24 h

Detrending with elevation
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 THE PATCHED KRIGING METHODOLOGY

ℎ𝑑𝑑 = 𝑚𝑚 ⋅ ln 𝑧𝑧 + 1 + 𝑚𝑚0 + 𝜖𝜖𝑑𝑑

Ordinary Kriging relies on the assumption that the 
covariance between any two random errors depends 
only on the distance  Need to remove trend with 
elevation.

A combined space-time approach for Regional Frequency Analysis
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68

 THE PATCHED KRIGING METHODOLOGY

SAMPLE VARIOGRAM for each
duration, evaluated as the mean

of the annual variograms
weighted on the number of 

active rain gauges every year.
Exponential THEORETICAL 

VARIOGRAM.

Theoretical and exponential variograms for the 1-hour duration.
The orange dashed lines refer to the annual sample variograms,
the black curve is the average sample variogram and the red one
the theoretical fitted one.

NUGGET is set to 0 to preserve
the original data at-gauge points.

A combined space-time approach for Regional Frequency Analysis
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1932
1962

2006

Ordinary Kriging
equations are applied

considering th
10 nearest stations

and results re-trended

Rainfall
cube 

+
Kriging

variance cube
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 THE PATCHED KRIGING METHODOLOGY

A combined space-time approach for Regional Frequency Analysis

«Coring» the 
cube along the 
time axis a set 
of complete 

«cored series» 
can be 

obtained



Kriging variance is larger in cells far from a gauged location and for a 
fixed cell increases/decreses when the number of station in the area 
decreases/increases

L-moments are weighted on the kriging variance, giving lower weight to 
the estimated values and to the years poor in data.

𝑤𝑤𝑖𝑖 = 𝜎𝜎max
2

𝜎𝜎𝑖𝑖
2 𝑤𝑤𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 = 10

1987

2010
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WEIGHTING THE L-MOMENTS

A combined space-time approach for Regional Frequency Analysis



Attenuation of 
the variability in 
the cored series

due to the use of 
interpolation.

Barycentre of the 
original series

Barycentre of the 
cored series

Density plot 
of the cored
series

Length of the 
original series
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 PRELIMINARY RESULTS

𝜏𝜏3 − 𝜏𝜏4 and 𝜏𝜏2 − 𝜏𝜏 plots. The grey dots represent the cored series and the coloured ones
the original ones.

A combined space-time approach for Regional Frequency Analysis



A bias correction factor factor K is introduced, 
as an increasing function of the distance from 
the nearer rain gauges, stemming from the 
assumptions that:

• If the target point is close to a gauging 
station, the distribution of the cored series 
will likely be very similar to the one of the 
original series, and then correction should 
be very limited.

• When the target point moves further away 
from the gauging stations, the smoothing 
effect becomes very relevant and the 
correction becomes essential.
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 BIAS CORRECTION

A combined space-time approach for Regional Frequency Analysis



CROSSVALIDATION
original VS cored values

Data density

The patched kriging is able to provide not only series with L-moments consistent with those of the
original ones, but also to reconstruct reliable annual maxima at ungauged areas preserving the
information contained in the short series.
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 RESULTS

𝜏𝜏3 − 𝜏𝜏4 and 𝜏𝜏2 − 𝜏𝜏 plots. The grey dots represent the cored series and the coloured ones
the original ones.

A combined space-time approach for Regional Frequency Analysis



𝜏𝜏4𝜏𝜏3𝜏𝜏
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 RESULTS

Distributed frequency 
analysis

(Left) L-Moments ratio diagram2 related to the cored 
series. The ellipses represent the 95% and the 90% 
acceptance areas, defined by bootstrapping from a 

Gumbel distribution. The colour scale is proportional 
to the density of the points. (Right) Spatial distribution 

of the cells falling inside the 90% and 95% 
acceptance area of the Gumbel distribution. 

2 Hosking and Wallis, 1997A combined space-time approach for Regional Frequency Analysis



Patched krigingClassical approach
A clue that something happened
here is now evident.

Interpolation techniques can only represent the estimation variance determined by the spatial and
temporal resolution of the data, no clues of what happened here («Bull eyes effect»)
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 RESULTS

A combined space-time approach for Regional Frequency Analysis



Analyzing the spatial
distribution of the spatial
derivative of the L-moments it
can be seen that the spatial
influence of the anomalies is
more significant when the order
of the L-moments increases.
This is directly linked to reasons
of sample variability of the L-
moments which, although more
robust than the classic
moments, lose strength when
the order increases.

𝜏𝜏3

𝜏𝜏

𝑙𝑙11ℎ

𝜏𝜏 𝜏𝜏3 𝑙𝑙11ℎ

22 Claps et al., 2015 77

 SPATIALIZATION OF THE LOCALIZED INFORMATION22

A combined space-time approach for Regional Frequency Analysis



For the estimation of the parameters of the
distributions, the L-moments are spatially
filtered on areas of increasing radius as the
order of moments increased. In detail, for
each cell are considered:
• The mean relative to the cell itself
• 𝜏𝜏 spatially averaged on a 2RLCV x2RLCV

square
• 𝜏𝜏3 spatially averaged on a 2RLCA x2RLCA

square
with RLCA> RLCV estimated with reference to
the spatial correlogram of the data.

𝜏𝜏3

𝜏𝜏
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 SPATIALIZATION OF THE LOCALIZED INFORMATION22



Design rainfall for T=200 
years with a GEV distribution. 

Before correction After correction

𝜏𝜏3

𝜏𝜏
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 SPATIALIZATION OF THE LOCALIZED INFORMATION22
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DATA ASSIMILATION at
DIFFERENT SPATIO-
TEMPORAL SCALES

RAIN GAUGESRAIN GAUGES
“Patched Kriging”
RAIN GAUGES
“Patched Kriging”
-> need integration for
better representing rainfall fields

EXTREME RAINFALL 
ON A WIDE COMPLEX 

DOMAIN

OPEN ISSUES

81A combined space-time approach for Regional Frequency Analysis
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