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Background and Goals 
 
The past century hydrological sciences developed, among the other Earth Sciences sectors, as a data poor scientific 
discipline. In the 70’s, 80’ and 90’s hydrologists and water resource management professionals struggled with lack of data, 
data limitations due to the spatial and temporal scale and significant inaccuracies and data voids in hydrological time series 
and spatial layers. As a matter of fact, hydrologists developed geospatial and numerical interpolation, extrapolations and 
models to address water resource and risk management challenges and issues. At the end of the century the situation 
abruptly changed with the Earth Observation (EO) of the water cycle and land morphology from space. Advanced data 
processing and distribution systems that were implemented at the beginning of the new century easily and freely provided 
continuous high resolution topographical and environmental data. This was a turning point for hydrology, with the advent 
of terrain analysis and spatially distributed models that were finally feeded by spatially continuous data on water 
morphology and hydrologic processes. In less than 20 years, remote sensing and ground monitoring systems have 
transformed the way hydrologists work with an exponential increase of data temporal, spatial scale and resolution. We now 
live in a data rich world, with public and private satellites, Lidar, drones and ground radars that provide unlimited 
opportunities and data to hydrologists for understanding, monitoring, modeling and interpreting watershed physical 
processes, features and water-human interactions in complex urban ecosystems. Moreover, Internet of Things (IoT), video 
cams and environmental low cost sensors are now increasingly available providing information not only on natural and 
urban hydrologic system dynamics, but also on human behavior, risk perception and societal dynamics related to human 
needs (i.e. water-food-energy nexus), natural disasters and water stress. Citizens are not only just passive users, but they 
dynamically interact, sending and receiving information in real time, becoming human sensors of the real world. As a 
result, while hydrology is transforming with “New data”, Big Data and Data/Citizen science, it seems that it has become 
more and more important to make sure that the quest for hyper-resolution global water modeling, does not neglect the 
importance of proper understanding and representation of hydrological and meteorological processes in complex multi-
disciplinary earth science research and projects. General goal of this Winter School is to guide participants in 
understanding and learning the theory, data, methods and tools by means of lectures and hands on for an extensive and 
immersive introduction to most recent findings of hydrological sciences. At the end of the School students will catch the 
opportunities of the “Data Rich Hydrology” era we live in, while learning the importance of understanding the knowledge 
gaps and scientific advancements related to hydrological process mechanics and evolving watershed features. 
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A classic problem in hydrology
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Flood flow for engineering design…



… and to understand changing systems

quantify the uncertainty in design flood estimates under nonstation-
ary conditions. The quantification of uncertainty in the case of
nonstationarity poses additional complexities owing to additional
parameters that are necessary for modeling trends as well as the
errors in projecting the temporal evolution of future changes.
Although the uncertainty quantification approach is demonstrated
for the case of the GEV distribution, the general methods presented
in this study can be extended to other distributions, such as to those
of the Pearson family.

In the ensuing section, the paradigm shift for the concepts of
return period and design floods from stationary to nonstationary
conditions is summarized. Next, various methods for quantifying
uncertainty in the form of confidence intervals for design floods
are presented. The paper concludes with an example application
in a watershed, where observations exhibit a clear nonstationarity
in extreme floods.

Nonstationary Paradigm for Return Period
and Quantiles

Under nonstationarity, the probability distribution of annual floods,
FZðz; θtÞ, is considered to vary with time, t. The time-varying dis-
tribution is defined by a parameter vector, θt that is a function of
time, t. Also, it is assumed that, at an initial year, t¼ to, a flood-
related hydraulic structure has been designed and constructed based
on the flood quantile zq0 , which corresponds to an initial return
period, T0 ¼ 1=p0 ¼ 1=ð1 − q0Þ, in which p0 and q0 represent
the exceedance and nonexceedance probabilities of zq0 , respec-
tively. The assumption that the underlying model has parameters
that vary through time may be viewed as if the flood distribution
changes through the years as shown schematically in Fig. 1.

In addition, the occurrences of annual floods are assumed to be
independent, and zq0 is to be determined such that the expected
return period of the design flood is T years in the future (yet to
be defined). This concept of T should not be confused with the
return period, T0, that corresponds to time, t0. Therefore, what
should be the design flood at time t¼ t0 so that the level of pro-
tection under a nonstationary future is equivalent to T years?

Cooley (2013) and Salas and Obeysekera (2014) have demon-
strated that a nonstationary framework for defining and estimating
the return period, T, is feasible by using the concept of expected
waiting time for the first occurrence of a flood exceeding the design
flood. Such a concept has the benefit that it converges into the

traditional formula where T ¼ 1=p in the case of stationarity. Using
this concept, a convenient formula for T, which is applicable for
nonstationary conditions is given by the following (Cooley
2013; Salas and Obeysekera 2014):

T ¼ 1þ
X∞

x¼1

Yx

t¼1

ð1 − ptÞ ð1Þ

where pt = exceedance probability, which is a function of time
attributable to nonstationarity (Fig. 1). pt is a function of both
zq0 (design flood) and the parameter vector θt. For example, for
the case of the generalized extreme value (GEV) distribution with
time varying parameters

FZðz; θtÞ ¼ exp
!
−
"
1þ εt

#
z − μt

σt

$%−1=εt&
ð2Þ

It follows that pt is given by

pt¼ 1 − exp
!
−
"
1þ εt

σt
ðzq0 − μtÞ

%−1=εt&
ð3Þ

In Eqs. (2) and (3), θt¼ ðμt; σt; εtÞ, where μt = location; σt =
scale; and εt= shape parameters of the GEV, all of which are func-
tions of time. However, even for the stationary case, the shape
parameter is difficult to estimate reliably, and for this reason, it
is advisable to assume the shape parameter as a constant (Coles
2001; Katz 2013) unless there is a convincing reason to let the
shape parameter vary as a function of time. This assumption could
have implications for analysis of extremes in hydrology, and further
work is needed to investigate accurate estimation of the shape
parameter in cases in which short records are available for estima-
tion. The method developed in the ensuing sections are not con-
strained by the assumption of the constant shape parameter.

Assuming that θt is known, the expression for the expected re-
turn period, T, can be applied for two different cases: (1) for an
initial design quantile, zq0, to determine T; and (2) for a desired
T to determine the required design quantile, zq0. Computation
for Case 1 is straightforward; but Case 2, which represents a more
common design situation, requires an iterative solution of Eq. (1)
using Eq. (3). This paper demonstrates three different methods for
quantifying the uncertainty in zq0 when Case 2 is used.

Fig. 1. Sketch for defining the nonstationary condition associated with determining design floods for a project that may be designed and constructed
at time, to, when it will begin operation; dashed line is the location parameter, μt, of the nonstationary GEVmodel fitted to the flood discharge data; in
general, other parameters may also vary with time
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Quantifying the drivers and effects 

of changes (climate, land, river 

training, …)

more effective drainage systems. The net effect of these
changes on storm runoff is an increase in peak runoff. In
particular, this is often observed for smaller floods,
whereas larger floods are relatively less affected (Hollis,
1975; Hundecha and Bárdossy, 2004). The construction of
flood mitigation structures such as retention basins and
polders in association with urban developments will usu-
ally result in a reduction in downstream flood risk (Apel
et al., 2004, 2006). Because of their local nature, land use
change effects are more important in small catchments
(Blöschl et al., 2007).

Another human-induced modification is storage of water
in dams for irrigation, hydroelectric power production and
other water uses. The flood regime of a very large number
of rivers around the world is affected by dams (Graf, 1999;
Nilsson et al., 2005). As an example, Figure 9.6 (top)
shows the Clinch River in Tennessee, USA. The Norris
Dam was constructed in 1936 with a storage capacity of
3.1 km³. This is similar to the magnitude of the river’s total

annual runoff of 3.4 km³. Construction of the Norris Dam
resulted in a very significant reduction in the flood peaks,
as shown in Figure 9.6. This change is clearly visible in
the time series of the floods, but it is not visible in the
flood frequency curve. Figure 9.6 (bottom) shows the
Yahagi River at Iwazu, Japan. The Yahagi Dam, located
50 km upstream of the gauge, was installed in 1970. Its
storage capacity is 0.075 km³ and the total annual runoff
of the river is 1.4 km³ at the stream gauge. The flood time
series indicate that the smaller floods seem to have
decreased but there is no apparent effect on the larger
floods. In this case the anthropogenic impacts are less
apparent in the flood records. These examples illustrate
three points. First, it may not be meaningful to construct
flood frequency curves from non-stationary flood data
because, as shown for the Clinch River, it is not clear as
to what the parent distribution of floods would refer.
Second, it is important to not only check the flood time
series for any non-stationarities but to also examine the
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Figure 9.6. Maximum annual daily runoff and flood frequencies. (Top) Clinch River below the Norris Dam, Tennesee, USA (catchment
area, 7545 km2). The Norris Dam was installed in 1936 with 3.1 km3 storage capacity. The annual runoff of the river is 3.4 km3. (Bottom)
Yahagi River at Iwazu, Japan (catchment area, 1356 km2). The Yahagi Dam is located 50 km upstream of the gauge and was installed in 1970
with 0.075 km³ storage capacity. The annual runoff of the river is 1.4 km3 at the stream gauge. Data: Japan River Association, River
Discharge Year Book, 1950–2010, courtesy of ICHARM. Construction of flood frequency curves from non-stationary flood time series may
not be meaningful.
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Observations in the place of interest?

indicated that arid (less rainy) catchments are characterised
by more variability. Figure 5.13 shows the results of
applying this approach to a global data set, stratified into
Australia and Southern Africa and the Rest of the World
(McMahon et al., 2007b). The CV of annual runoff in
Australia and Southern Africa is significantly higher than
the rest of the world, for a given mean annual runoff.

5.3.2 Index methods
Index methods assume that the locally scaled signature
of interest, or some functional form of it, is the same for
all catchments in the group, which is called homoge-
neous if it fulfils this assumption. In the following, index
methods for mean and variability of the annual runoff
are discussed.

Mean annual runoff
Budyko-type models Budyko-type models offer the
potential to estimate mean annual actual evaporation from
the aridity index and precipitation without calibration.
Mean annual runoff is then estimated as the residual of
precipitation and evaporation. Budkyo-type models
include: Schreiber (Schreiber, 1904), Ol’dekop (Ol’dekop,
1911), Turc–Pike (Turc, 1954; Pike, 1964; Milly and
Dunne, 2002), Budyko (Budyko, 1974), Fu (Fu, 1981;
Zhang et al., 2004; Yang et al., 2007); Choudhury–Yang
(Choudhury, 1999; Yang et al., 2008), Zhang two-
parameter model (Zhang et al., 2001), and a linear model
by Potter and Zhang (2009). These models are driven by
the aridity index, and they do not use explicit conceptual-
isations of catchment processes. They typically include one
parameter, treated as fixed and not necessarily related to
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estimated from regressions vs.
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correspond to the 90% prediction
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of 47 catchments in north-western
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(2007a).
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Figura 1: Dislocazione geografica delle stazioni di misura disponibili.
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Other possible issues
• Correlation of data
• Nestedness of catchments
• Non stationarity



Observations in the period of interest?

Try to extend the record with:
• Non systematic data
• Proxy measures
• New sources of information
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What if no observations available?

a) b)

c) d)

Ungauged basin
Gauged
basins

Try to transfer information



How? Regional models
Substitute time for space

1999). Seasonality has also been used for classification to
identify low flows and floods (see e.g., Young et al.,
2003; Laaha and Blöschl, 2006b), based on the assump-
tion that differences in the occurrence of low flows or
floods within a year are a reflection of differences in
hydrological processes and can thus be used to define
homogeneous regions. Homogeneous groups can be
delineated manually on a map, or by means of statistical
grouping techniques.

5.3 Statistical methods of predicting annual
runoff in ungauged basins

To predict runoff signatures in ungauged catchments,
transfer mechanisms are needed to link information from
other catchments to the catchment of interest. Regional
statistical techniques have been a topic of intensive explor-
ation in this area. These techniques treat the prediction of a
target variable as the problem of estimating a random
variable, while explaining the maximum amount of the
spatial variance. Similar statistical assumptions and struc-
tures are used for many different predicted runoff signa-
tures. In Chapters 5 to 10 these methods are reviewed,
under the topics of:

! regression methods, where specific runoff signatures are
transferred based on their relationship with catchment
and climatic attributes via some analytical expression;

! index methods, which assume that a known, quantitative
runoff, catchment or climatic signature is constant
within a defined homogeneous region, except for a
locally varying scaling index;

! geostatistical and proximity methods, which exploit
spatial smoothness of the runoff signature. Here ‘spatial’
may refer to either geographic space or a parameter
space defined by catchment attributes;

! runoff estimation from short-records, which exploits the
relationship between moments of short runoff records
and runoff in neighbouring catchments.

5.3.1 Regression methods
Mean annual runoff
Regressions are one of the simplest statistical methods
used to estimate mean annual runoff. The relationships
often exploit independent variables that are prime drivers
in runoff generation, for example, mean annual precipita-
tion, or that are clearly related to runoff volume, such as
catchment area. An early application of regional modelling
of annual runoff was by Langbein (1949), who developed
graphical relationships between mean annual runoff, pre-
cipitation and temperature in the USA.

More complex multivariate analyses include additional
independent variables, e.g., hydroclimate, area, elevation
and land cover. Hawley and McCuen (1982) discuss
numerous advantages of multivariate regional regression
analysis to estimate mean annual runoff. Water yield
estimates from regression methods are objectively repro-
ducible, their bias is minimised by the method, and uncer-
tainty associated with them can be quantified under
explicit assumptions. A less evident advantage is that
regression methods may capture relationships that are
evident in the data, but for which no theoretical explan-
ation is available, for example due to the co-evolution of
vegetation, landscape and hydrological response. In
regression models, mean annual runoff is related typically
to geomorphic and climate characteristics. Examples for
the USA include Lull and Sopper (1966) and Johnson
(1970) for New England, Thomas and Benson (1970) for
regions in the western, central and southern USA, Majte-
nyi (1972) for areas of South Dakota, Hawley and
McCuen (1982) for the western USA, and Vogel et al.
(1997) for the north-eastern USA. Vogel et al. (1999)
developed regional multivariate models to estimate mean
and variances of annual runoff across 18 regions in the
USA. The results of Vogel et al. (1999) are discussed
further in Section 5.5.1. Figure 5.12 presents one case
study in north-western Italy (Viglione et al., 2007a). The
mean annual runoff was obtained by a non-linear regres-
sion with the mean annual precipitation and the catchment
average elevation. Elevation provides a surrogate for tem-
perature (and therefore energy, vegetation type, snow
processes and their seasonal variation). Cross-validation
results are shown, along with the 90% prediction intervals
for the regression in Figure 5.12b.

Duan et al. (2010) used principal component analysis to
relate 51 years of annual runoff data for 11 stream gauging
stations in north-west China to annual precipitation, evap-
oration and catchment characteristics. The regional regres-
sion model accounted for 87% of the variance in the runoff
estimates. The eight variables included in the model are
annual precipitation, annual surface water evaporation,
sub-basin centroid coordinates, sub-basin centroid eleva-
tion, sub-basin area, sub-basin wetland area and sub-basin
shape factor.

Inter-annual variability
Kalinin (1971) was probably the first researcher to develop
an empirical relationship to estimate the coefficient of
variation of annual runoff (CV). The CV was related to
the catchment area through a two-parameter, decreasing,
non-linear relationship. The decrease of the CV of annual
runoff with area is to be expected, as a result of space–time
averaging. McMahon et al. (1992) related the CV to the
mean annual runoff with a power-law relationship, which
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How? Regional models

Possible comparative approaches:
• Different models to the same dataset
• Same model across different datasets
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Abstract. Flood frequency analysis (FFA) aims at estimating
quantiles with large return periods for an extreme discharge
variable. Many FFA implementations are used in operational
practice in France. These implementations range from the
estimation of a pre-specified distribution to continuous sim-
ulation approaches using a rainfall simulator coupled with
a rainfall–runoff model. This diversity of approaches raises
questions regarding the limits of each implementation and
calls for a nation-wide comparison of their predictive perfor-
mances.
This paper presents the results of a national comparison of

the main FFA implementations used in France. More accu-
rately, eight implementations are considered, corresponding
to the local, regional and local-regional estimation of Gum-
bel and Generalized Extreme Value (GEV) distributions, as
well as the local and regional versions of a continuous simu-
lation approach. A data-based comparison framework is ap-
plied to these eight competitors to evaluate their predictive
performances in terms of reliability and stability, using daily
flow data from more than 1000 gauging stations in France.
Results from this comparative exercise suggest that two

implementations dominate their competitors in terms of pre-
dictive performances, namely the local version of the con-
tinuous simulation approach and the local-regional estima-
tion of a GEV distribution. More specific conclusions include
the following: (i) the Gumbel distribution is not suitable for
Mediterranean catchments, since this distribution demonstra-
bly leads to an underestimation of flood quantiles; (ii) the lo-
cal estimation of a GEV distribution is not recommended, be-
cause the difficulty in estimating the shape parameter results
in frequent predictive failures; (iii) all the purely regional

implementations evaluated in this study displayed a quite
poor reliability, suggesting that prediction in completely un-
gauged catchments remains a challenge.

1 Introduction

1.1 Diversity of flood frequency analysis approaches

The flood frequency analysis (FFA) is a central step in a hy-
drological risk assessment. In general the FFA aims at es-
timating “flood quantiles”, i.e., discharge values whose re-
turn period is large (usually > 10 years). It has many op-
erational applications, including design of civil engineering
structures (e.g., polders, bridges, levees, dam spillways, pro-
tection structures for nuclear power plants) or mapping of
flood-prone areas. Many FFA approaches exist in the liter-
ature. In France, two distinct families of approach are used
in practice. The first family comprises FFA implementations
that estimate the parameters of a given flood distribution (a
Gumbel or a Generalized Extreme Value (GEV) distribution
in most cases). The second family uses a continuous simu-
lation approach (Arnaud and Lavabre, 1999, 2002), where a
rainfall generator is coupled with a rainfall–runoff model to
generate long hydrological series from which extreme quan-
tiles can be inferred. Within both families, parameter es-
timation can be performed at the local scale using at-site
streamflow data only (e.g., Kuczera, 1999; Martins and Ste-
dinger, 2000), at the regional scale using streamflow data
from neighboring stations only (e.g., Stedinger and Tasker,

Published by Copernicus Publications on behalf of the European Geosciences Union.
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[1] An abundance of methods have been developed over the years to perform the frequency
analysis (FA) of extreme environmental variables. Although numerous comparisons
between these methods have been implemented, no general comparison framework has
been agreed upon so far. The objective of this paper is to build the foundation of a
data-based comparison framework, which aims at complementing more standard
comparison schemes based on Monte Carlo simulations or statistical testing. This
framework is based on the following general principles: (i) emphasis is put on the
predictive ability of competing FA implementations, rather than their sole descriptive
ability measured by some goodness-of-fit criterion; (ii) predictive ability is quantified by
means of reliability indices, describing the consistency between validation data (not used
for calibration) and FA predictions; (iii) stability is also quantified, i.e., the ability of a FA
implementation to yield similar estimates when calibration data change; and (iv) the
necessity to subject uncertainty estimates to the same scrutiny as point estimates is
recognized, and a practical approach based on the use of the predictive distribution is
proposed for this purpose. This framework is then applied to a case study involving 364
gauging stations in France, where 10 FA implementations are compared. These
implementations correspond to the local, regional, and local-regional estimation of Gumbel
and generalized extreme value distributions. Results show that reliability and stability
indices are able to reveal marked differences between FA implementations. Moreover,
the case study also confirms that using the predictive distribution to indirectly scrutinize
uncertainty estimates is a viable approach, with distinct FA implementations showing
marked differences in the reliability of their uncertainty estimates. The proposed
comparison framework therefore constitutes a valuable tool to compare the predictive
reliability of competing FA implementations, along with the reliability of their uncertainty
estimates.

Citation: Renard, B., K. Kochanek, M. Lang, F. Garavaglia, E. Paquet, L. Neppel, K. Najib, J. Carreau, P. Arnaud, Y. Aubert, F.
Borchi, J.-M. Soubeyroux, S. Jourdain, J.-M. Veysseire, E. Sauquet, T. Cipriani, and A. Auffray (2013), Data-based comparison of
frequency analysis methods: A general framework, Water Resour. Res., 49, doi:10.1002/wrcr.20087.

1. Introduction

[2] Frequency analysis (FA) of extremes is one of the
cornerstones of hazard quantification and risk assessment.
Its basic objective is to estimate the distribution of some
environmental variable X. Such a distribution can be used

to estimate the exceedance probability of a given value of
X or alternatively to estimate the p-quantile of X (where p
denotes the nonexceedance probability). The estimation of
quantiles is of great importance since they are used to
design civil engineering structures (e.g., dams, reservoirs,
and bridges) or to map hazard-prone areas where restric-
tions may be enforced (e.g., building restrictions in flood
zones).

[3] FA has been the subject of extensive research, yield-
ing an abundance of approaches that can roughly be classi-
fied as follows:

[4] 1. At-site FA is a standard statistical analysis: pa-
rameters of a prespecified distribution are estimated based
on the at-site observations of the variable X.

[5] 2. Climate/weather-informed at-site FA uses addi-
tional meteorological (e.g., weather type) [Garavaglia et
al., 2010] or climatic (e.g., interdecadal Pacific oscillation)
[Micevski et al., 2006a] information. This family of
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2Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland.
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Abstract. The objective of this paper is to assess the perfor-
mance of methods that predict low flows and flood runoff in
ungauged catchments. The aim is to learn from the similari-
ties and differences between catchments in different places,
and to interpret the differences in performance in terms of
the underlying climate-landscape controls. The assessment
is performed at two levels. The Level 1 assessment is a meta-
analysis of 14 low flow prediction studies reported in the lit-
erature involving 3112 catchments, and 20 flood prediction
studies involving 3023 catchments. The Level 2 assessment
consists of a more focused and detailed analysis of individual
basins from selected studies from Level 1 in terms of how
the leave-one-out cross-validation performance depends on
climate and catchment characteristics as well as on the re-
gionalisation method. The results indicate that both flood and
low flow predictions in ungauged catchments tend to be less
accurate in arid than in humid climates and more accurate
in large than in small catchments. There is also a tendency
towards a somewhat lower performance of regressions than
other methods in those studies that apply different methods
in the same region, while geostatistical methods tend to per-
form better than other methods. Of the various flood region-
alisation approaches, index methods show significantly lower
performance in arid catchments than regression methods or
geostatistical methods. For low flow regionalisation, regional
regressions are generally better than global regressions.

1 Introduction

Estimating flood and low flow discharges in ungauged basins
are among the most fundamental challenges in catchment hy-
drology. There is a long track record in statistical hydrology
of developing methods to estimate, in an optimal way, these
discharges from runoff observations in neighbouring catch-
ments and from catchment characteristics. Common to these
statistical methods is the idea of catchment grouping, i.e. the
notion that extreme events that have not been observed in a
particular location could already have been observed some-
where else. Therefore runoff data (on floods or low flows)
from many sites are pooled in order to obtain a representative
sample of what could happen in a particular location. One of
the key aspects of the methods consists of exactly how this
pooling is performed.
There are a number of options. The classical approach con-

sists of subdividing the study domain into a number of fixed,
contiguous regions which are used to regionalise floods or
low flows for all catchments in the area (e.g. as used in the
index flood method, Dalrymple, 1960). The assumption of
this method is that areas close to each other are characterised
by similar climate, topography, geology, soils and land use,
which gives rise to similar catchment hydrological response
and therefore to similar floods or low flows. The grouping
is usually found by geographical boundaries, by combining
maps of the catchment characteristics in some way (Beable
and McKerchar, 1982) or by a diverse set of statistical meth-
ods. These include cluster analysis using catchment char-
acteristics (Nathan and McMahon, 1990), residuals from a

Published by Copernicus Publications on behalf of the European Geosciences Union.

There are many different flavors, many different implementations
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Original questions: can we identify the "best" strategy for 
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Compare the behavior of different approaches to true data
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A comparison of regional flood frequency analysis approaches
in a simulation framework
D. Ganora1 and F. Laio1

1Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy

Abstract Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of
the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depend-
ing on the way the information is transferred to the site of interest, but it is not clear in the literature if a
specific method systematically outperforms the others. The aim of this study is to provide a framework
wherein carrying out the intercomparison by building up a virtual environment based on synthetically gen-
erated data. The considered regional approaches include: (i) a unique regional curve for the whole region;
(ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a
Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth
estimation procedure where the parameters of the regional model vary continuously along the space. Virtu-
al environments are generated considering different patterns of heterogeneity, including step change and
smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within
the region, the spatially smooth regional approach outperforms the others, with overall errors 10–50% low-
er than the other methods. In the case of a step-change, the spatially smooth and clustering procedures
perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-
change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate
the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of
the scale parameter of the parent distribution, number of predictor variables and different parent distribu-
tion. Overall, the spatially smooth approach appears as the most robust approach as its performances are
more stable across different patterns of heterogeneity, especially when short records are considered.

1. Introduction

The probabilistic analysis of discharge-related variables is a fundamental step to support, among other
tasks, risk analysis, mitigation measures, and the design of hydraulic infrastructures. However, in basins
where few or no discharge data are available, it is not possible to directly provide a robust statistical analy-
sis; these cases belong to the ‘‘ungauged basins’’ family, which has been extensively studied in the last
decade, also thanks to the Prediction in Ungauged Basins (PUB) initiative held by the International Associa-
tion of Hydrological Sciences (IAHS). Different methodologies can be adopted for the purpose of predicting
the variable of interest in ungauged basins, usually referred to as ‘‘regional models’’ in the literature.

Bl€oschl et al. [2013] have recently reviewed the most recent procedures to evaluate annual runoff, seasonal
runoff, flow duration curves, low flows, floods and hydrographs in ungauged (or poorly gauged) basins. The
book describes a variety of case studies; however, no clear consensus emerges about the methodology to
be preferred. In fact, although all regional models are based on the fundamental concept of substituting
the temporal information at a site by exploiting observations at other sites, different approaches exist to
transfer information to the site of interest. The great variety of methods and implementations used in
regional analysis is not surprising when considering the great variety of conditions (different variables, cli-
matic regimes, soil variability, etc.) the methods are applied to.

In this context, Wagener et al. [2013] noticed that the information transfer can generally follow two paths. In
the first case, catchments are grouped together according to their mutual distances computed on a set of
selected basin characteristics, also known as descriptors (e.g., geographical location, area, mean elevation,
precipitation regime, soil type, etc.); neighbor catchments are expected to have a similar hydrological
behavior. Each group, called a ‘‘region,’’ should be statistically homogeneous to guarantee that the basins

Key Points:
! Different regional approaches are

compared in a simulation-based
framework
! The regional models are applied to

virtual scenarios with different
degree of heterogeneity
! Spatially smooth estimation

technique performs better in a wide
range of conditions
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CA                              ROI                              SS

changes in s and s3. Significance tests are used to check if the parameters are statistically different from 0. An
application following this approach can be found in Laio et al. [2011] with a smooth prediction of the first
three L-moments; similar regression-based spatially smooth applications have been used for instance by Kjeld-
sen and Jones [2007] to predict the index-flood, and in Stedinger and Tasker [1985] and Griffis and Stedinger
[2007] to directly predict the quantile for a fixed return period (thus not in the index-flood framework).

The regional approaches described above and the way they implement the regionalization process are
sketched in Figure 2, while further technical details are reported in Appendix A. For the sake of clarity, the
sketches refer to a two-dimensional spatial domain, while the algorithms can be applied to one-
dimensional space as well as to cases with more dimensions. Furthermore, the application of the three
regional methods to the virtual environment of Figure 1a is reported in the Figure 1b of the same figure. In
the example the CA method detects two homogeneous subregions, providing a constant value KT ! 4.8 for
0" x" 0.5 and a constant, but different, value in the right part of the domain (KT ! 2.5 for 0.6" x" 1). The
ROI method provides, in general, different KT values for each target station, although in this case five sta-
tions on the left side of the domain show the same value KT ! 4 because they are associated to the same
pooling group. Finally, the SS shows a smooth variability of KT due to the smooth variability of regional
L-moments.

In this work, also a Regional Frequency Analysis with a single Region (RFA-1R) has been considered as a
baseline: in this approach a single region is assumed to be representative over the whole domain. The
unique regional growth curve is the GEV distribution whose parameters are estimated by using the average
sample L-moments obtained from all the available virtual records.

Beyond the regional approaches, at gauged stations also the at-site frequency analysis (SFA) has been per-
formed to estimate the growth factor. The value of KT is computed by directly using each set of at-site sam-
ple L-moments. This approach is again used as a baseline for comparison with other methods.

2.3. Assumptions in the Analysis Framework
The study is based on some simplifying assumptions that help keeping the simulation framework computa-
tionally tractable, but that allows one to highlight the main features of the studied models.

In a first instance, both at-site and regional estimates are based on the GEV probability distribution, that is
the true parent used in the analysis. This avoids the misspecification of the probability distribution, thus
allowing the system to provide results free from epistemic errors [see e.g., Botto et al., 2014] that would be
introduced in the analysis by the choice of an erroneous distribution. This hypothesis has been then relaxed
to study scenarios in which the fitting distribution differs from the parent one (see the sensitivity analysis).

Moreover, the heterogeneity is defined according to the coordinate x (allowing the shape parameter h3 to
vary as a function of x only), and the same coordinate is used by all the RFA models to drive the estimation

Figure 2. Sketch of the estimation procedure for the three regional models involved in the study: (a) Fixed subregions with a constant KT value (RFA-CA); (b) variable pooling groups for
different target points (RFA-ROI); (c) estimates KT as a smooth continuous function in the descriptor space (RFA-SS). Red circles represent the gauging stations. The coordinates x and y
represent a generic bi-dimensional descriptor space, but the models can work on lower or higher dimensional spaces.
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Plus 2 reference models:
• 1R = just averaging the results over the whole set
• SFA = at-site frequency analysis
Model implementations need to be reproducible and unsupervised



Flood frequency analysis

domain to guarantee that the region is
truly homogeneous. Alternative scenari-
os will mimic heterogeneous regions by
allowing the parameters of the parent
distribution to vary over the spatial
domain.

The simulated records are sampled
from a generalized extreme value distri-
bution (GEV), whose quantile function
reads [e.g., Grimaldi et al., 2011]:

QT 5h11
h2

h3
12 2ln 12

1
T

! "# $h3
( )

(1)

with h1, h2 and h3 being the location, scale and shape parameter, respectively. T is the return period in years
associated to the quantile QT; other probability distributions have been considered in the sensitivity analysis
(see section 3.3). For a set of parameters, the normalized frequency, or growth factor, KT can be obtained as

KT 5
QT
!Q

(2)

where !Q5h11h2 12C 11h3ð Þ½ $=h3 is the mean value of the distribution (the index-flood), Cð%Þ being the
Gamma function.

This work is focused on the estimation of KT, congruently with typical applications in the field of regional
flood frequency analysis based on the index-flood approach [Dalrymple, 1960]. In fact, the mean value is
usually considered easier to be estimated than the growth factor, as it can be assessed locally using short
samples or through regression models [Laio et al., 2011; Rosbjerg et al., 2013, section 9.3.4].

An example of virtual environment is reported in Figure 1a, where the 11 gauging stations are placed over
the unitary domain. The figure reports a typical simulation generated by sampling a GEV parent distribution
whose parameters are summarized in Table 1 (with h3 referred to the LIN-H scenario); grey dots in the figure
denote the normalized annual series drawn from each station distribution (virtual records), while the true
growth factor (solid line), computed over the spatial domain using the exact parameters of the parent distri-
bution, is compared to the estimated growth factor (circles) obtained by the at-site fitting of the simulated
records.

2.2. Regional Modeling
The second step of our analysis is the application of the regional approaches to the simulated data sets to
provide estimates of KT at different locations, referred to as target sites.

The modeling framework developed in this section has been designed to be representative of the main
regional approaches currently used in real applications, although, as already mentioned, each regionaliza-
tion method can be customized in different ways. Three approaches have been selected in this work, each
one implemented in order to be unsupervised and reproducible, allowing their systematic application to
many sets of simulated data without requiring manual case-specific tuning of the model.

The value of KT is obtained by fitting the GEV distribution using the method of L-moments in all cases; L-
moments are widely used statistics describing the shape of a probability distribution (analogously to the
moments), based on linear combinations of order statistics. The L-moment of order 1, or k1, is equivalent to
the mean value of the distribution, whereas the dimensionless L-moments ratio s (or L-CV) and s3 (or L-
skewness) respectively represent the variability and the skewness of the distribution. With k1, s and s3 the
three parameters of the GEV distribution can be estimated. For an introduction to L-moments the reader is
referred to Hosking and Wallis [1997].

Since we are interested in the regional prediction of KT rather than QT, it is sufficient to make (regional) pre-
dictions of s and s3: the KT value can in fact be obtained directly from equation (1) with k1 5 1 and the

Table 1. Symbols and Parameter Values for the Reference Scenarios Used in
the Simulations

Variable Value Notes

Sample length n 5 50
Number of stations ns 5 11 Equally spaced along x
Return period T 5 200 years
Parent distribution GEV Also used for prediction
Location parameter h1 5 1
Scale parameter h2 5 0.5
Shape parameter h3520:410:6 % x LIN-H scenario

h3520:210:2 % x LIN-L scenario
hL

3520:3; hR
350:1 STEP-H scenarioa

hL
3520:2; hR

350 STEP-L scenarioa

ahL is valid for 0 & x & 0.5 and hR for 0.5< x & 1.

Water Resources Research 10.1002/2016WR018604
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domain to guarantee that the region is
truly homogeneous. Alternative scenari-
os will mimic heterogeneous regions by
allowing the parameters of the parent
distribution to vary over the spatial
domain.

The simulated records are sampled
from a generalized extreme value distri-
bution (GEV), whose quantile function
reads [e.g., Grimaldi et al., 2011]:
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with h1, h2 and h3 being the location, scale and shape parameter, respectively. T is the return period in years
associated to the quantile QT; other probability distributions have been considered in the sensitivity analysis
(see section 3.3). For a set of parameters, the normalized frequency, or growth factor, KT can be obtained as

KT 5
QT
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(2)

where !Q5h11h2 12C 11h3ð Þ½ $=h3 is the mean value of the distribution (the index-flood), Cð%Þ being the
Gamma function.

This work is focused on the estimation of KT, congruently with typical applications in the field of regional
flood frequency analysis based on the index-flood approach [Dalrymple, 1960]. In fact, the mean value is
usually considered easier to be estimated than the growth factor, as it can be assessed locally using short
samples or through regression models [Laio et al., 2011; Rosbjerg et al., 2013, section 9.3.4].

An example of virtual environment is reported in Figure 1a, where the 11 gauging stations are placed over
the unitary domain. The figure reports a typical simulation generated by sampling a GEV parent distribution
whose parameters are summarized in Table 1 (with h3 referred to the LIN-H scenario); grey dots in the figure
denote the normalized annual series drawn from each station distribution (virtual records), while the true
growth factor (solid line), computed over the spatial domain using the exact parameters of the parent distri-
bution, is compared to the estimated growth factor (circles) obtained by the at-site fitting of the simulated
records.

2.2. Regional Modeling
The second step of our analysis is the application of the regional approaches to the simulated data sets to
provide estimates of KT at different locations, referred to as target sites.

The modeling framework developed in this section has been designed to be representative of the main
regional approaches currently used in real applications, although, as already mentioned, each regionaliza-
tion method can be customized in different ways. Three approaches have been selected in this work, each
one implemented in order to be unsupervised and reproducible, allowing their systematic application to
many sets of simulated data without requiring manual case-specific tuning of the model.

The value of KT is obtained by fitting the GEV distribution using the method of L-moments in all cases; L-
moments are widely used statistics describing the shape of a probability distribution (analogously to the
moments), based on linear combinations of order statistics. The L-moment of order 1, or k1, is equivalent to
the mean value of the distribution, whereas the dimensionless L-moments ratio s (or L-CV) and s3 (or L-
skewness) respectively represent the variability and the skewness of the distribution. With k1, s and s3 the
three parameters of the GEV distribution can be estimated. For an introduction to L-moments the reader is
referred to Hosking and Wallis [1997].

Since we are interested in the regional prediction of KT rather than QT, it is sufficient to make (regional) pre-
dictions of s and s3: the KT value can in fact be obtained directly from equation (1) with k1 5 1 and the

Table 1. Symbols and Parameter Values for the Reference Scenarios Used in
the Simulations

Variable Value Notes

Sample length n 5 50
Number of stations ns 5 11 Equally spaced along x
Return period T 5 200 years
Parent distribution GEV Also used for prediction
Location parameter h1 5 1
Scale parameter h2 5 0.5
Shape parameter h3520:410:6 % x LIN-H scenario

h3520:210:2 % x LIN-L scenario
hL

3520:3; hR
350:1 STEP-H scenarioa

hL
3520:2; hR

350 STEP-L scenarioa

ahL is valid for 0 & x & 0.5 and hR for 0.5< x & 1.
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Figura 14: Fasce di confidenza relative alla curva di crescita log-Normale del Po a Carignano calcolata
sulla base degli L-momenti campionari (a sinistra) e sui corrispettivi L-momenti regionali in
cross-validazione (a destra).
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Figura 15: Fasce di confidenza relative alla curva di frequenza log-Normale del Po a Carignano calcolata
sulla base della piena indice e degli L-momenti campionari (a sinistra) e sui corrispettivi L-
momenti regionali in cross-validazione (a destra).
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x is the generic driving variable (area, 
rainfall, geographical location,…)

From the single site to the region
Real landscape

• Highly complex
• We have only 1 realization

Virtual landscape

• Complexity defined by the hydrologist
• We simulate many realizations

indicated that arid (less rainy) catchments are characterised
by more variability. Figure 5.13 shows the results of
applying this approach to a global data set, stratified into
Australia and Southern Africa and the Rest of the World
(McMahon et al., 2007b). The CV of annual runoff in
Australia and Southern Africa is significantly higher than
the rest of the world, for a given mean annual runoff.

5.3.2 Index methods
Index methods assume that the locally scaled signature
of interest, or some functional form of it, is the same for
all catchments in the group, which is called homoge-
neous if it fulfils this assumption. In the following, index
methods for mean and variability of the annual runoff
are discussed.

Mean annual runoff
Budyko-type models Budyko-type models offer the
potential to estimate mean annual actual evaporation from
the aridity index and precipitation without calibration.
Mean annual runoff is then estimated as the residual of
precipitation and evaporation. Budkyo-type models
include: Schreiber (Schreiber, 1904), Ol’dekop (Ol’dekop,
1911), Turc–Pike (Turc, 1954; Pike, 1964; Milly and
Dunne, 2002), Budyko (Budyko, 1974), Fu (Fu, 1981;
Zhang et al., 2004; Yang et al., 2007); Choudhury–Yang
(Choudhury, 1999; Yang et al., 2008), Zhang two-
parameter model (Zhang et al., 2001), and a linear model
by Potter and Zhang (2009). These models are driven by
the aridity index, and they do not use explicit conceptual-
isations of catchment processes. They typically include one
parameter, treated as fixed and not necessarily related to
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84 Runoff Prediction in Ungauged Basins

regional s and s3 values, as KT from equation (2) is equivalent to QT where the mean of the distribution has
a unitary value.

All methods implement a regional frequency analysis (RFA): based on a cluster analysis (RFA-CA) of the
gauging stations; identifying similar gauging stations through the region of influence approach (RFA-ROI);
or using a spatially smooth (RFA-SS) estimator of the variable of interest.

The RFA-CA method splits the descriptor space in a number of fixed, contiguous and nonoverlapping subre-
gions. The number and size of the subregions (also a single region is a possible outcome) is defined by com-
bining a hierarchical clustering algorithm and a test for homogeneity. Each subregion is characterized by a
unique regional pair of s and s3 values, thus resulting in a single KT value. Prediction is performed by associ-
ating the target site to a specific region according to its location in the descriptor space.

The RFA-ROI method creates an ad hoc subregion for each target site by grouping together gauging sta-
tions by proximity in the descriptor space. The pooling group is tested for homogeneity. Prediction is per-
formed by computing s and s3 values using only the samples belonging to the group, and then
computing KT. Differently from the CA approach, the subregions dynamically change for different target
sites. Different examples of application of the CA and the ROI methods can be found in Rosbjerg et al.
[2013, section 9.2.3].

In the RFA-SS method a linear regression (i.e., a mapping function [Wagener et al., 2013]) in the form y5a01
a1x allows the interpolation of the L-moments at any target site along the spatial domain x, where y is in
turn the sample s and s3 (a0 and a1 are parameters to be estimated). KT varies smoothly according to
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Figure 1. Example of simulation with 11 virtual gauging stations. Grey dots are the simulated data (i.e., the normalized annual maximum
values) drawn from the GEV distribution divided by the sample average (with h151; h250:5; h3520:410:6 ! x). (a) The true value and the
at-site estimator of KT; (b) the regional estimators. A return period T 5 200 years is considered.
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regional s and s3 values, as KT from equation (2) is equivalent to QT where the mean of the distribution has
a unitary value.

All methods implement a regional frequency analysis (RFA): based on a cluster analysis (RFA-CA) of the
gauging stations; identifying similar gauging stations through the region of influence approach (RFA-ROI);
or using a spatially smooth (RFA-SS) estimator of the variable of interest.

The RFA-CA method splits the descriptor space in a number of fixed, contiguous and nonoverlapping subre-
gions. The number and size of the subregions (also a single region is a possible outcome) is defined by com-
bining a hierarchical clustering algorithm and a test for homogeneity. Each subregion is characterized by a
unique regional pair of s and s3 values, thus resulting in a single KT value. Prediction is performed by associ-
ating the target site to a specific region according to its location in the descriptor space.

The RFA-ROI method creates an ad hoc subregion for each target site by grouping together gauging sta-
tions by proximity in the descriptor space. The pooling group is tested for homogeneity. Prediction is per-
formed by computing s and s3 values using only the samples belonging to the group, and then
computing KT. Differently from the CA approach, the subregions dynamically change for different target
sites. Different examples of application of the CA and the ROI methods can be found in Rosbjerg et al.
[2013, section 9.2.3].

In the RFA-SS method a linear regression (i.e., a mapping function [Wagener et al., 2013]) in the form y5a01
a1x allows the interpolation of the L-moments at any target site along the spatial domain x, where y is in
turn the sample s and s3 (a0 and a1 are parameters to be estimated). KT varies smoothly according to
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Figure 1. Example of simulation with 11 virtual gauging stations. Grey dots are the simulated data (i.e., the normalized annual maximum
values) drawn from the GEV distribution divided by the sample average (with h151; h250:5; h3520:410:6 ! x). (a) The true value and the
at-site estimator of KT; (b) the regional estimators. A return period T 5 200 years is considered.
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gauging stations; identifying similar gauging stations through the region of influence approach (RFA-ROI);
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gions. The number and size of the subregions (also a single region is a possible outcome) is defined by com-
bining a hierarchical clustering algorithm and a test for homogeneity. Each subregion is characterized by a
unique regional pair of s and s3 values, thus resulting in a single KT value. Prediction is performed by associ-
ating the target site to a specific region according to its location in the descriptor space.

The RFA-ROI method creates an ad hoc subregion for each target site by grouping together gauging sta-
tions by proximity in the descriptor space. The pooling group is tested for homogeneity. Prediction is per-
formed by computing s and s3 values using only the samples belonging to the group, and then
computing KT. Differently from the CA approach, the subregions dynamically change for different target
sites. Different examples of application of the CA and the ROI methods can be found in Rosbjerg et al.
[2013, section 9.2.3].

In the RFA-SS method a linear regression (i.e., a mapping function [Wagener et al., 2013]) in the form y5a01
a1x allows the interpolation of the L-moments at any target site along the spatial domain x, where y is in
turn the sample s and s3 (a0 and a1 are parameters to be estimated). KT varies smoothly according to
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Figure 1. Example of simulation with 11 virtual gauging stations. Grey dots are the simulated data (i.e., the normalized annual maximum
values) drawn from the GEV distribution divided by the sample average (with h151; h250:5; h3520:410:6 ! x). (a) The true value and the
at-site estimator of KT; (b) the regional estimators. A return period T 5 200 years is considered.
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regional s and s3 values, as KT from equation (2) is equivalent to QT where the mean of the distribution has
a unitary value.

All methods implement a regional frequency analysis (RFA): based on a cluster analysis (RFA-CA) of the
gauging stations; identifying similar gauging stations through the region of influence approach (RFA-ROI);
or using a spatially smooth (RFA-SS) estimator of the variable of interest.

The RFA-CA method splits the descriptor space in a number of fixed, contiguous and nonoverlapping subre-
gions. The number and size of the subregions (also a single region is a possible outcome) is defined by com-
bining a hierarchical clustering algorithm and a test for homogeneity. Each subregion is characterized by a
unique regional pair of s and s3 values, thus resulting in a single KT value. Prediction is performed by associ-
ating the target site to a specific region according to its location in the descriptor space.

The RFA-ROI method creates an ad hoc subregion for each target site by grouping together gauging sta-
tions by proximity in the descriptor space. The pooling group is tested for homogeneity. Prediction is per-
formed by computing s and s3 values using only the samples belonging to the group, and then
computing KT. Differently from the CA approach, the subregions dynamically change for different target
sites. Different examples of application of the CA and the ROI methods can be found in Rosbjerg et al.
[2013, section 9.2.3].

In the RFA-SS method a linear regression (i.e., a mapping function [Wagener et al., 2013]) in the form y5a01
a1x allows the interpolation of the L-moments at any target site along the spatial domain x, where y is in
turn the sample s and s3 (a0 and a1 are parameters to be estimated). KT varies smoothly according to
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Figure 1. Example of simulation with 11 virtual gauging stations. Grey dots are the simulated data (i.e., the normalized annual maximum
values) drawn from the GEV distribution divided by the sample average (with h151; h250:5; h3520:410:6 ! x). (a) The true value and the
at-site estimator of KT; (b) the regional estimators. A return period T 5 200 years is considered.
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Example of application of the regional models to the single realization (of the 
whole landscape)

changes in s and s3. Significance tests are used to check if the parameters are statistically different from 0. An
application following this approach can be found in Laio et al. [2011] with a smooth prediction of the first
three L-moments; similar regression-based spatially smooth applications have been used for instance by Kjeld-
sen and Jones [2007] to predict the index-flood, and in Stedinger and Tasker [1985] and Griffis and Stedinger
[2007] to directly predict the quantile for a fixed return period (thus not in the index-flood framework).

The regional approaches described above and the way they implement the regionalization process are
sketched in Figure 2, while further technical details are reported in Appendix A. For the sake of clarity, the
sketches refer to a two-dimensional spatial domain, while the algorithms can be applied to one-
dimensional space as well as to cases with more dimensions. Furthermore, the application of the three
regional methods to the virtual environment of Figure 1a is reported in the Figure 1b of the same figure. In
the example the CA method detects two homogeneous subregions, providing a constant value KT ! 4.8 for
0" x" 0.5 and a constant, but different, value in the right part of the domain (KT ! 2.5 for 0.6" x" 1). The
ROI method provides, in general, different KT values for each target station, although in this case five sta-
tions on the left side of the domain show the same value KT ! 4 because they are associated to the same
pooling group. Finally, the SS shows a smooth variability of KT due to the smooth variability of regional
L-moments.

In this work, also a Regional Frequency Analysis with a single Region (RFA-1R) has been considered as a
baseline: in this approach a single region is assumed to be representative over the whole domain. The
unique regional growth curve is the GEV distribution whose parameters are estimated by using the average
sample L-moments obtained from all the available virtual records.

Beyond the regional approaches, at gauged stations also the at-site frequency analysis (SFA) has been per-
formed to estimate the growth factor. The value of KT is computed by directly using each set of at-site sam-
ple L-moments. This approach is again used as a baseline for comparison with other methods.

2.3. Assumptions in the Analysis Framework
The study is based on some simplifying assumptions that help keeping the simulation framework computa-
tionally tractable, but that allows one to highlight the main features of the studied models.

In a first instance, both at-site and regional estimates are based on the GEV probability distribution, that is
the true parent used in the analysis. This avoids the misspecification of the probability distribution, thus
allowing the system to provide results free from epistemic errors [see e.g., Botto et al., 2014] that would be
introduced in the analysis by the choice of an erroneous distribution. This hypothesis has been then relaxed
to study scenarios in which the fitting distribution differs from the parent one (see the sensitivity analysis).

Moreover, the heterogeneity is defined according to the coordinate x (allowing the shape parameter h3 to
vary as a function of x only), and the same coordinate is used by all the RFA models to drive the estimation

Figure 2. Sketch of the estimation procedure for the three regional models involved in the study: (a) Fixed subregions with a constant KT value (RFA-CA); (b) variable pooling groups for
different target points (RFA-ROI); (c) estimates KT as a smooth continuous function in the descriptor space (RFA-SS). Red circles represent the gauging stations. The coordinates x and y
represent a generic bi-dimensional descriptor space, but the models can work on lower or higher dimensional spaces.
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Example of a single realization (of the whole landscape)

regional s and s3 values, as KT from equation (2) is equivalent to QT where the mean of the distribution has
a unitary value.

All methods implement a regional frequency analysis (RFA): based on a cluster analysis (RFA-CA) of the
gauging stations; identifying similar gauging stations through the region of influence approach (RFA-ROI);
or using a spatially smooth (RFA-SS) estimator of the variable of interest.

The RFA-CA method splits the descriptor space in a number of fixed, contiguous and nonoverlapping subre-
gions. The number and size of the subregions (also a single region is a possible outcome) is defined by com-
bining a hierarchical clustering algorithm and a test for homogeneity. Each subregion is characterized by a
unique regional pair of s and s3 values, thus resulting in a single KT value. Prediction is performed by associ-
ating the target site to a specific region according to its location in the descriptor space.

The RFA-ROI method creates an ad hoc subregion for each target site by grouping together gauging sta-
tions by proximity in the descriptor space. The pooling group is tested for homogeneity. Prediction is per-
formed by computing s and s3 values using only the samples belonging to the group, and then
computing KT. Differently from the CA approach, the subregions dynamically change for different target
sites. Different examples of application of the CA and the ROI methods can be found in Rosbjerg et al.
[2013, section 9.2.3].

In the RFA-SS method a linear regression (i.e., a mapping function [Wagener et al., 2013]) in the form y5a01
a1x allows the interpolation of the L-moments at any target site along the spatial domain x, where y is in
turn the sample s and s3 (a0 and a1 are parameters to be estimated). KT varies smoothly according to
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Figure 1. Example of simulation with 11 virtual gauging stations. Grey dots are the simulated data (i.e., the normalized annual maximum
values) drawn from the GEV distribution divided by the sample average (with h151; h250:5; h3520:410:6 ! x). (a) The true value and the
at-site estimator of KT; (b) the regional estimators. A return period T 5 200 years is considered.
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Scenario 0: true homogeneity

3. the records are sampled at each station s from the parent distribution; each sample is of length n;
4. the at-site estimate (SFA) of KT is computed from each record using the GEV distribution and T 5 200

years; this value will be used as a benchmark result;
5. the RFA-CA model is calibrated using the whole set of records, then it is applied at each station s to pro-

vide the predicted KT value (with GEV and T 5 200 years);
6. analogously, the RFA-ROI, the RFA-SS and the RFA-1R models are applied to the simulated landscape;
7. error statistics are computed at each station for each model by comparing the true and estimated KT values;
8. steps 3–7 are repeated for N 5 500 different simulations (N has been defined as a compromise between

results stability and computational load);
9. overall error statistics are obtained by averaging the errors obtained in the individual simulations.

For each simulation, time series are generated independently at each station, meaning that there is no correla-
tion between concurrent values at different spatial locations. In fact, all the regional models under analysis
explicitly require the samples to be uncorrelated to avoid including redundant information in the model, that
would reduce the model robustness and results reliability. A discussion about the effects of inter-site correla-
tion on quantile prediction in the RFA-CA approach can be found in Hosking and Wallis [1997, section 7.5.6],
where the authors observe that moderate correlation is not a major concern in cluster-based regionalization.
Inter-site correlation can also affect the reliability of the heterogeneity test of Hosking and Wallis, but correc-
tions to the testing procedure are available [Castellarin et al., 2008]. If the regression-based model is used, a
generalized least square procedure should be adopted, thus requiring the estimation of the covariance matrix
(an example of computation of the covariance structure between flood series in a regression-based approach,
although not in the index-flood context, is reported by Griffis and Stedinger [2007]).

3.1. The Homogeneous Scenario
The first scenario under analysis is a truly homogeneous region which can be considered as a baseline. In
fact, this is the base hypothesis of many regional applications, and consists of an area where every time
series is generated from the same probability distribution, in this case the GEV parent distribution with
parameters h1 5 1, h 2 5 0.5 and h 3 5 20.1. This set of parameters provides a true KT value 4.5 for all stations.
Note that different sets of parameters would provide similar results, with a different dispersion of the pre-
diction errors due to the different variance/skewness of the simulated records.

The application of the regional models to each of the 500 simulation leads to the results reported in Figure
4a, which shows the box plots of the relative error
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Figure 4. (a) Box-plot representation of the prediction error e, based on 500 simulations and (b) resulting overall error W for all models at
one station. The scenario is based on a truly homogeneous region with a GEV parent with h 151; h 250:5 and h 3520:1: the length of the
simulated time series (n) varies on the horizontal axis; the return period is T 5 200 years.
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where KT is the true normalized quantile, bK T the normalized quantile obtained from one of the models, s
indicates the station and i the simulation run. Each box plot represents a modeling approach and summa-
rizes the variability of the relative error across the simulations. Box plots are grouped according to the sam-
ple length n of the simulated time series; four different homogeneous scenarios with different sample
lengths have been investigated. Being the region homogeneous, all stations are characterized by equivalent
results (except for small differences due to the sampling variability).

All models appear to be unbiased, and the at-site fitting (SFA) always provides larger variance than the
regional models (RFA); this is expected as the RFA better exploits the information than the SFA, since
RFA estimators are based on the joint use of multiple records. These results confirm the basic assumption
of regional models, i.e., that more reliable results can be obtained by grouping together data from multi-
ple stations, when applied to a genuine homogeneous region. A complementary result is that all the
regional models provide equivalent results, being the difference between their error distributions not
significant. Sample length does not affect these conclusions, but just acts on the variance of the results
by reducing the variance with increasing n. Note that values of the sample length in the range
20! n! 100 can be considered realistic, with n 5 50 a typical value representative of real regional appli-
cations; instead, n 5 1000 is reported just for comparison to show the quasi-asymptotic behavior of the
estimators.

Although the homogeneous case is quite straightforward to understand, a couple of error statistics can be
conveniently introduced to facilitate the comparison of the results obtained for different scenarios. The first
index is the mean absolute relative error, computed at each station s, as:

Ws5
1
N

XN

i51

jes;i j (4)

where N is the number of simulations performed in the analysis (e.g., N 5 500). The second statistic is the
mean absolute relative error computed for each simulation i:

Xi5
1
ns

Xns

s51

jes;i j (5)

where ns is the number of stations considered in the analysis. The two error indices are useful to investigate
in more detail the model efficiency (W) and the model robustness (X).

Figure 4b, shows the variability of W as a function of the sample length n. RFA approaches are basically
indistinguishable, while SFA is characterized by significantly larger errors.

A different way to analyze the results is presented in Figure 5, which shows the statistic Xi comput-
ed for each simulation, thus resulting in 500 points on each plot; this representation allows one to
directly compare any pair of models. Among RFA approaches, there is a large number of realization
in which the X values fall on the bisector of the plot; this means that both models provide the same
results, which happens because they are both able to properly detect that the region is homoge-
neous. Correct detection of homogeneity occurs (for n 5 50) in 89.9% of the simulations for RFA-CA,
90.0% for RFA-SS and 85.4% for RFA-ROI, while the RFA-1R is inherently homogeneous by definition
in all simulations.

Results provided by the regional models are similar despite the differences in methods for detecting homo-
geneity: the RFA-CA starts by considering a unique cluster and tests it for homogeneity; in most of the cases
the cluster results homogeneous and the creation of subregions is thus inhibited; the RFA-ROI behaves like
the RFA-CA although possible subregions are created with a different grouping algorithm. Instead, the RFA-
SS computes at-site L-moments and performs regressions with the coordinate x as a regressor; in most of
the cases the slope of the regression does not result to be significative; the linear model is thus dropped in
favor of a constant value (i.e., the regression intercept, equal to the mean L-moment), which is adopted as
the unique regional value.
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where KT is the true normalized quantile, bK T the normalized quantile obtained from one of the models, s
indicates the station and i the simulation run. Each box plot represents a modeling approach and summa-
rizes the variability of the relative error across the simulations. Box plots are grouped according to the sam-
ple length n of the simulated time series; four different homogeneous scenarios with different sample
lengths have been investigated. Being the region homogeneous, all stations are characterized by equivalent
results (except for small differences due to the sampling variability).

All models appear to be unbiased, and the at-site fitting (SFA) always provides larger variance than the
regional models (RFA); this is expected as the RFA better exploits the information than the SFA, since
RFA estimators are based on the joint use of multiple records. These results confirm the basic assumption
of regional models, i.e., that more reliable results can be obtained by grouping together data from multi-
ple stations, when applied to a genuine homogeneous region. A complementary result is that all the
regional models provide equivalent results, being the difference between their error distributions not
significant. Sample length does not affect these conclusions, but just acts on the variance of the results
by reducing the variance with increasing n. Note that values of the sample length in the range
20! n! 100 can be considered realistic, with n 5 50 a typical value representative of real regional appli-
cations; instead, n 5 1000 is reported just for comparison to show the quasi-asymptotic behavior of the
estimators.

Although the homogeneous case is quite straightforward to understand, a couple of error statistics can be
conveniently introduced to facilitate the comparison of the results obtained for different scenarios. The first
index is the mean absolute relative error, computed at each station s, as:
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1
N
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where N is the number of simulations performed in the analysis (e.g., N 5 500). The second statistic is the
mean absolute relative error computed for each simulation i:

Xi5
1
ns

Xns

s51
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where ns is the number of stations considered in the analysis. The two error indices are useful to investigate
in more detail the model efficiency (W) and the model robustness (X).

Figure 4b, shows the variability of W as a function of the sample length n. RFA approaches are basically
indistinguishable, while SFA is characterized by significantly larger errors.

A different way to analyze the results is presented in Figure 5, which shows the statistic Xi comput-
ed for each simulation, thus resulting in 500 points on each plot; this representation allows one to
directly compare any pair of models. Among RFA approaches, there is a large number of realization
in which the X values fall on the bisector of the plot; this means that both models provide the same
results, which happens because they are both able to properly detect that the region is homoge-
neous. Correct detection of homogeneity occurs (for n 5 50) in 89.9% of the simulations for RFA-CA,
90.0% for RFA-SS and 85.4% for RFA-ROI, while the RFA-1R is inherently homogeneous by definition
in all simulations.

Results provided by the regional models are similar despite the differences in methods for detecting homo-
geneity: the RFA-CA starts by considering a unique cluster and tests it for homogeneity; in most of the cases
the cluster results homogeneous and the creation of subregions is thus inhibited; the RFA-ROI behaves like
the RFA-CA although possible subregions are created with a different grouping algorithm. Instead, the RFA-
SS computes at-site L-moments and performs regressions with the coordinate x as a regressor; in most of
the cases the slope of the regression does not result to be significative; the linear model is thus dropped in
favor of a constant value (i.e., the regression intercept, equal to the mean L-moment), which is adopted as
the unique regional value.
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The cases in which a regional model is not able to detect the homogeneity can influence the global per-
formances of the method, summarized in Table 2 as the overall error E obtained by averaging Ws over all
stations (or, equivalently, by averaging Xi over all simulations),
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Results show similar performances of the RFA-CA, RFA-SS and RFA-ROI approaches, with RFA-1R represent-
ing the irreducible error value due to sample variability.

3.2. Effect of Heterogeneity
The at-site and regional modeling approaches have been then applied to the four heterogeneity scenarios
defined in Table 1; the corresponding boxplots of prediction errors are shown in Figure 6. In contrast to the
homogeneous scenario, here the location of the station along x is relevant for the analysis; therefore, all sta-
tions have been considered separately. Regional models show rather different performances, and this effect
is exacerbated in the high-variability scenarios (plots LIN-H and STEP-H, respectively). In general, none of
the regional models provides unbiased results at all stations. Moreover, it is worth noting that RFA methods
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Figure 5. Comparison of couples of X values (see equation (5)) of each regional model for 500 simulations; results refer to the truly
homogeneous scenario with n 5 50.
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where KT is the true normalized quantile, bK T the normalized quantile obtained from one of the models, s
indicates the station and i the simulation run. Each box plot represents a modeling approach and summa-
rizes the variability of the relative error across the simulations. Box plots are grouped according to the sam-
ple length n of the simulated time series; four different homogeneous scenarios with different sample
lengths have been investigated. Being the region homogeneous, all stations are characterized by equivalent
results (except for small differences due to the sampling variability).

All models appear to be unbiased, and the at-site fitting (SFA) always provides larger variance than the
regional models (RFA); this is expected as the RFA better exploits the information than the SFA, since
RFA estimators are based on the joint use of multiple records. These results confirm the basic assumption
of regional models, i.e., that more reliable results can be obtained by grouping together data from multi-
ple stations, when applied to a genuine homogeneous region. A complementary result is that all the
regional models provide equivalent results, being the difference between their error distributions not
significant. Sample length does not affect these conclusions, but just acts on the variance of the results
by reducing the variance with increasing n. Note that values of the sample length in the range
20! n! 100 can be considered realistic, with n 5 50 a typical value representative of real regional appli-
cations; instead, n 5 1000 is reported just for comparison to show the quasi-asymptotic behavior of the
estimators.

Although the homogeneous case is quite straightforward to understand, a couple of error statistics can be
conveniently introduced to facilitate the comparison of the results obtained for different scenarios. The first
index is the mean absolute relative error, computed at each station s, as:
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where N is the number of simulations performed in the analysis (e.g., N 5 500). The second statistic is the
mean absolute relative error computed for each simulation i:
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where ns is the number of stations considered in the analysis. The two error indices are useful to investigate
in more detail the model efficiency (W) and the model robustness (X).

Figure 4b, shows the variability of W as a function of the sample length n. RFA approaches are basically
indistinguishable, while SFA is characterized by significantly larger errors.

A different way to analyze the results is presented in Figure 5, which shows the statistic Xi comput-
ed for each simulation, thus resulting in 500 points on each plot; this representation allows one to
directly compare any pair of models. Among RFA approaches, there is a large number of realization
in which the X values fall on the bisector of the plot; this means that both models provide the same
results, which happens because they are both able to properly detect that the region is homoge-
neous. Correct detection of homogeneity occurs (for n 5 50) in 89.9% of the simulations for RFA-CA,
90.0% for RFA-SS and 85.4% for RFA-ROI, while the RFA-1R is inherently homogeneous by definition
in all simulations.

Results provided by the regional models are similar despite the differences in methods for detecting homo-
geneity: the RFA-CA starts by considering a unique cluster and tests it for homogeneity; in most of the cases
the cluster results homogeneous and the creation of subregions is thus inhibited; the RFA-ROI behaves like
the RFA-CA although possible subregions are created with a different grouping algorithm. Instead, the RFA-
SS computes at-site L-moments and performs regressions with the coordinate x as a regressor; in most of
the cases the slope of the regression does not result to be significative; the linear model is thus dropped in
favor of a constant value (i.e., the regression intercept, equal to the mean L-moment), which is adopted as
the unique regional value.
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Scenarios with heterogeneity 

domain to guarantee that the region is
truly homogeneous. Alternative scenari-
os will mimic heterogeneous regions by
allowing the parameters of the parent
distribution to vary over the spatial
domain.

The simulated records are sampled
from a generalized extreme value distri-
bution (GEV), whose quantile function
reads [e.g., Grimaldi et al., 2011]:

QT 5h11
h2

h3
12 2ln 12

1
T

! "# $h3
( )

(1)

with h1, h2 and h3 being the location, scale and shape parameter, respectively. T is the return period in years
associated to the quantile QT; other probability distributions have been considered in the sensitivity analysis
(see section 3.3). For a set of parameters, the normalized frequency, or growth factor, KT can be obtained as

KT 5
QT
!Q

(2)

where !Q5h11h2 12C 11h3ð Þ½ $=h3 is the mean value of the distribution (the index-flood), Cð%Þ being the
Gamma function.

This work is focused on the estimation of KT, congruently with typical applications in the field of regional
flood frequency analysis based on the index-flood approach [Dalrymple, 1960]. In fact, the mean value is
usually considered easier to be estimated than the growth factor, as it can be assessed locally using short
samples or through regression models [Laio et al., 2011; Rosbjerg et al., 2013, section 9.3.4].

An example of virtual environment is reported in Figure 1a, where the 11 gauging stations are placed over
the unitary domain. The figure reports a typical simulation generated by sampling a GEV parent distribution
whose parameters are summarized in Table 1 (with h3 referred to the LIN-H scenario); grey dots in the figure
denote the normalized annual series drawn from each station distribution (virtual records), while the true
growth factor (solid line), computed over the spatial domain using the exact parameters of the parent distri-
bution, is compared to the estimated growth factor (circles) obtained by the at-site fitting of the simulated
records.

2.2. Regional Modeling
The second step of our analysis is the application of the regional approaches to the simulated data sets to
provide estimates of KT at different locations, referred to as target sites.

The modeling framework developed in this section has been designed to be representative of the main
regional approaches currently used in real applications, although, as already mentioned, each regionaliza-
tion method can be customized in different ways. Three approaches have been selected in this work, each
one implemented in order to be unsupervised and reproducible, allowing their systematic application to
many sets of simulated data without requiring manual case-specific tuning of the model.

The value of KT is obtained by fitting the GEV distribution using the method of L-moments in all cases; L-
moments are widely used statistics describing the shape of a probability distribution (analogously to the
moments), based on linear combinations of order statistics. The L-moment of order 1, or k1, is equivalent to
the mean value of the distribution, whereas the dimensionless L-moments ratio s (or L-CV) and s3 (or L-
skewness) respectively represent the variability and the skewness of the distribution. With k1, s and s3 the
three parameters of the GEV distribution can be estimated. For an introduction to L-moments the reader is
referred to Hosking and Wallis [1997].

Since we are interested in the regional prediction of KT rather than QT, it is sufficient to make (regional) pre-
dictions of s and s3: the KT value can in fact be obtained directly from equation (1) with k1 5 1 and the

Table 1. Symbols and Parameter Values for the Reference Scenarios Used in
the Simulations

Variable Value Notes

Sample length n 5 50
Number of stations ns 5 11 Equally spaced along x
Return period T 5 200 years
Parent distribution GEV Also used for prediction
Location parameter h1 5 1
Scale parameter h2 5 0.5
Shape parameter h3520:410:6 % x LIN-H scenario

h3520:210:2 % x LIN-L scenario
hL

3520:3; hR
350:1 STEP-H scenarioa

hL
3520:2; hR

350 STEP-L scenarioa

ahL is valid for 0 & x & 0.5 and hR for 0.5< x & 1.
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of KT at any station. The regionalization problem, in fact, can be separated into two steps: the first is the
identification of the driving variables which (partially) explain the between-site variability of the hydrologi-
cal variable of interest. This step can be performed regardless of the regional model. In the second step, all
regional models can be applied using the same driving variables, although each model uses this informa-
tion in a different way. The driving variable is thus a common feature of CA, SS and ROI methods, but is
used as a predictor variable in a very different way: CA uses x as the basis for clustering the stations; ROI
does a similar action, but for creating distinct groups of gauged data for each target site; SS considers x as
the independent variable in a regression. Note that, although the driving variable is considered known in
this analysis, this does not mean that the estimation by the regional models is straightforward, as this is not
equivalent to know the pattern of variation of h3. For instance, in the case of a scenario with the shape
parameter h3 linearly varying along x, the RFA-SS model will search for a linear variability of the L-moments
along x that are, however, nonlinearly related to both h3 and KT.

In this study, we focus on two possible patterns of heterogeneity: (i) a linear variation of the shape parame-
ter h3 of the GEV distribution along the x-coordinate, and (ii) a step-change in the parameter h3 which
switches between two constant values. The latter pattern represents a situation in which there are actually
two homogeneous subregions. Both the linear and the step-change patterns, referred to as LIN and STEP
respectively, have been implemented with a ‘‘mild’’ heterogeneity, in which h3 has a low variability range
(L), and with a ‘‘strong’’ heterogeneity, in which h3 has a high variability range (H). A summary of the param-
eters used in the different scenarios is reported in Table A4; the patterns are represented in Figure 3a, while
Figure 3b of the same figure shows the true KT value for each point of the domain corresponding to the h3

values of Figure 3a. Further analyses with different parameterizations are discussed in section 3.3 (Sensitivity
Analysis) while details are provided in the supporting information. Also a truly homogeneous scenario
(h3 5 20.1 for all x) is considered as a reference situation.

3. Results

A systematic analysis of the behavior of the regional models under different scenarios (i.e., different degrees
of heterogeneity) has been implemented with the following procedure:

1. the reference scenario is selected, i.e., the parameters of a GEV parent distribution are defined for each
station s, following a specific pattern of heterogeneity;

2. the true KT value is computed from the parent distribution at each station considering a T 5 200 years
return period; this value will be used as a reference to evaluate models performance;

Figure 3. Variability of (a) the shape parameter h3 and (b) corresponding normalized quantile KT in the four scenarios (equation (3))
obtained from the GEV distribution with h151; h250:5 for T 5 200 years.

Water Resources Research 10.1002/2016WR018604

GANORA AND LAIO REGIONAL APPROACHES COMPARISON 5649



2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

x

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

STEP-L 

STEP-H 

LIN-L 

LIN-H 

Figure 6. Boxplot of errors e for SFA and RFAs methods at the 11 stations. Results are based on 500 simulations. The plots refer to: linear
strong variability (LIN-H), linear mild variability (LIN-L), strong step-change (STEP-H) and mild step-change (STEP-L). The shape parameter
h 3 varies according to the scenario; the other parameters are h 151; h 250:5, T 5 200 years and n 5 50. Boxes denote the quartiles and the
median value; whiskers extend for a maximum of 1.5 times the interquartile range above and below the box.

Water Resources Research 10.1002/2016WR018604

GANORA AND LAIO REGIONAL APPROACHES COMPARISON 5653

Relative error
single-site/single-simulation



2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

x

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

SFA
RFA 1R
RFA CA
RFA SS
RFA ROI

STEP-L 

STEP-H 

LIN-L 

LIN-H 

Figure 6. Boxplot of errors e for SFA and RFAs methods at the 11 stations. Results are based on 500 simulations. The plots refer to: linear
strong variability (LIN-H), linear mild variability (LIN-L), strong step-change (STEP-H) and mild step-change (STEP-L). The shape parameter
h 3 varies according to the scenario; the other parameters are h 151; h 250:5, T 5 200 years and n 5 50. Boxes denote the quartiles and the
median value; whiskers extend for a maximum of 1.5 times the interquartile range above and below the box.

Water Resources Research 10.1002/2016WR018604

GANORA AND LAIO REGIONAL APPROACHES COMPARISON 5653

Relative error
single-site/single-simulation



perform generally worse than in the homogeneous case, while results from the SFA become comparable, if
not better in some cases, than those of regional models.

While in a truly homogeneous region all RFA approaches result more or less equivalent, Figures 6 and 7
(where the error index W is reported) show that models are quite sensitive to the degree of heterogeneity:
when variations are continuous along x (LIN), the RFA-SS method performs significantly better than the others,
as it provides smaller errors almost everywhere in the spatial domain. If the region is slightly heterogeneous,
the gap between RFA methods performances is reduced, but the RFA-SS still provides better results.

In the step-change scenario, where two homogeneous subregions are hidden in a unique domain, good
performances are, as expected, obtained by the RFA-CA method, which is able to clearly identify the
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Table 2. Overall Relative Errors E (Equation (6)) Obtained With Different Estimation Methods (Columns) and for Different Sample Size
(rows) for the Homogeneous Case With a GEV Parent With h151; h250:5; h3520:1 and T 5 200 Years

n SFA RFA-1R RFA-CA RFA-SS RFA-ROI

20 0.256 0.079 0.085 0.083 0.082
50 0.167 0.052 0.061 0.055 0.056
100 0.119 0.036 0.041 0.039 0.038
1000 0.038 0.011 0.013 0.012 0.012
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where KT is the true normalized quantile, bK T the normalized quantile obtained from one of the models, s
indicates the station and i the simulation run. Each box plot represents a modeling approach and summa-
rizes the variability of the relative error across the simulations. Box plots are grouped according to the sam-
ple length n of the simulated time series; four different homogeneous scenarios with different sample
lengths have been investigated. Being the region homogeneous, all stations are characterized by equivalent
results (except for small differences due to the sampling variability).

All models appear to be unbiased, and the at-site fitting (SFA) always provides larger variance than the
regional models (RFA); this is expected as the RFA better exploits the information than the SFA, since
RFA estimators are based on the joint use of multiple records. These results confirm the basic assumption
of regional models, i.e., that more reliable results can be obtained by grouping together data from multi-
ple stations, when applied to a genuine homogeneous region. A complementary result is that all the
regional models provide equivalent results, being the difference between their error distributions not
significant. Sample length does not affect these conclusions, but just acts on the variance of the results
by reducing the variance with increasing n. Note that values of the sample length in the range
20! n! 100 can be considered realistic, with n 5 50 a typical value representative of real regional appli-
cations; instead, n 5 1000 is reported just for comparison to show the quasi-asymptotic behavior of the
estimators.

Although the homogeneous case is quite straightforward to understand, a couple of error statistics can be
conveniently introduced to facilitate the comparison of the results obtained for different scenarios. The first
index is the mean absolute relative error, computed at each station s, as:

Ws5
1
N

XN

i51

jes;i j (4)

where N is the number of simulations performed in the analysis (e.g., N 5 500). The second statistic is the
mean absolute relative error computed for each simulation i:

Xi5
1
ns

Xns

s51

jes;i j (5)

where ns is the number of stations considered in the analysis. The two error indices are useful to investigate
in more detail the model efficiency (W) and the model robustness (X).

Figure 4b, shows the variability of W as a function of the sample length n. RFA approaches are basically
indistinguishable, while SFA is characterized by significantly larger errors.

A different way to analyze the results is presented in Figure 5, which shows the statistic Xi comput-
ed for each simulation, thus resulting in 500 points on each plot; this representation allows one to
directly compare any pair of models. Among RFA approaches, there is a large number of realization
in which the X values fall on the bisector of the plot; this means that both models provide the same
results, which happens because they are both able to properly detect that the region is homoge-
neous. Correct detection of homogeneity occurs (for n 5 50) in 89.9% of the simulations for RFA-CA,
90.0% for RFA-SS and 85.4% for RFA-ROI, while the RFA-1R is inherently homogeneous by definition
in all simulations.

Results provided by the regional models are similar despite the differences in methods for detecting homo-
geneity: the RFA-CA starts by considering a unique cluster and tests it for homogeneity; in most of the cases
the cluster results homogeneous and the creation of subregions is thus inhibited; the RFA-ROI behaves like
the RFA-CA although possible subregions are created with a different grouping algorithm. Instead, the RFA-
SS computes at-site L-moments and performs regressions with the coordinate x as a regressor; in most of
the cases the slope of the regression does not result to be significative; the linear model is thus dropped in
favor of a constant value (i.e., the regression intercept, equal to the mean L-moment), which is adopted as
the unique regional value.
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behavior of the regional models does not change. Moreover, the use of different return periods, equal to
T 5 50 years and T 5 500 years respectively, just influences the magnitude of errors that are larger for higher
return periods.
3.3.3. Variability of the Scale Parameter
Another possible pattern of heterogeneity has been studied by allowing the scale parameter h2 to vary along
the x dimension and keeping the location and the shape parameters of the GEV as constant values (equal to 1
and 20.1 respectively). Also in this case, two linear and two step-change scenarios have been investigated (the
detailed parameterization are reported in Table 4) which provide results similar to the reference scenarios.
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where KT is the true normalized quantile, bK T the normalized quantile obtained from one of the models, s
indicates the station and i the simulation run. Each box plot represents a modeling approach and summa-
rizes the variability of the relative error across the simulations. Box plots are grouped according to the sam-
ple length n of the simulated time series; four different homogeneous scenarios with different sample
lengths have been investigated. Being the region homogeneous, all stations are characterized by equivalent
results (except for small differences due to the sampling variability).

All models appear to be unbiased, and the at-site fitting (SFA) always provides larger variance than the
regional models (RFA); this is expected as the RFA better exploits the information than the SFA, since
RFA estimators are based on the joint use of multiple records. These results confirm the basic assumption
of regional models, i.e., that more reliable results can be obtained by grouping together data from multi-
ple stations, when applied to a genuine homogeneous region. A complementary result is that all the
regional models provide equivalent results, being the difference between their error distributions not
significant. Sample length does not affect these conclusions, but just acts on the variance of the results
by reducing the variance with increasing n. Note that values of the sample length in the range
20! n! 100 can be considered realistic, with n 5 50 a typical value representative of real regional appli-
cations; instead, n 5 1000 is reported just for comparison to show the quasi-asymptotic behavior of the
estimators.

Although the homogeneous case is quite straightforward to understand, a couple of error statistics can be
conveniently introduced to facilitate the comparison of the results obtained for different scenarios. The first
index is the mean absolute relative error, computed at each station s, as:

Ws5
1
N

XN

i51

jes;i j (4)

where N is the number of simulations performed in the analysis (e.g., N 5 500). The second statistic is the
mean absolute relative error computed for each simulation i:

Xi5
1
ns

Xns

s51

jes;i j (5)

where ns is the number of stations considered in the analysis. The two error indices are useful to investigate
in more detail the model efficiency (W) and the model robustness (X).

Figure 4b, shows the variability of W as a function of the sample length n. RFA approaches are basically
indistinguishable, while SFA is characterized by significantly larger errors.

A different way to analyze the results is presented in Figure 5, which shows the statistic Xi comput-
ed for each simulation, thus resulting in 500 points on each plot; this representation allows one to
directly compare any pair of models. Among RFA approaches, there is a large number of realization
in which the X values fall on the bisector of the plot; this means that both models provide the same
results, which happens because they are both able to properly detect that the region is homoge-
neous. Correct detection of homogeneity occurs (for n 5 50) in 89.9% of the simulations for RFA-CA,
90.0% for RFA-SS and 85.4% for RFA-ROI, while the RFA-1R is inherently homogeneous by definition
in all simulations.

Results provided by the regional models are similar despite the differences in methods for detecting homo-
geneity: the RFA-CA starts by considering a unique cluster and tests it for homogeneity; in most of the cases
the cluster results homogeneous and the creation of subregions is thus inhibited; the RFA-ROI behaves like
the RFA-CA although possible subregions are created with a different grouping algorithm. Instead, the RFA-
SS computes at-site L-moments and performs regressions with the coordinate x as a regressor; in most of
the cases the slope of the regression does not result to be significative; the linear model is thus dropped in
favor of a constant value (i.e., the regression intercept, equal to the mean L-moment), which is adopted as
the unique regional value.
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is preferable. When a sample is available, one can enter in the plots
and check if the point falls in the shaded area (sample standard
deviation lower that the regional one): in this case it is suggested
to use the sample estimate. Circles reported in Fig. 8 represent
the calibration set and put in evidence as, increasing the L-moment
order, the regional approaches become more reliable for short re-
cords, due to increased variance of sample L-moments estimators
with increasing L-moment order. For instance, the Ayasse basin
at Champorcher (which have a 29-years record, rQ = 9.9,
LCV = 0.266 and LCA = 0.274), has a sample rQind

equal to 1.8 and a
sample rLCV equal to 0.05, which implies that the corresponding
point falls in the gray area in Fig. 8a and b, i.e.for both Qind and
LCV it is preferable to use the sample estimates. Instead, the sample
rLCA , equal to 0.19, falls in the white area in Fig. 8c, i.e. the regional
LCA is more appropriate, because the (averaged) regional standard
deviation is 0.094.

In the light of the results of Fig. 8, one could take advantage of
the regional model to improve the local estimation of the flood fre-
quency curve, replacing sample L-moments with regionally-esti-
mated values whenever the regional estimates have smaller
variance. For the present case study, this applies to about 30% of
the LCV and about 80% of the LCA values.

5. Conclusions

The approach to the regional flood frequency analysis proposed
in this work aims at overcoming some limitations of the classical
methods based on (pooling) regions. Although some features of
our model already appeared in the scientific literature, the overall
conceptual framework is novel and useful for facilitating flood fre-
quency analysis where non-systematic or limited measurement
are available.

The method does not require to build up an at-site probability
distribution. The sample record is characterized by its L-moments,
that are used as the statistics necessary to reconstruct the complete
flood frequency curve, and that become the statistics to be regional-
ized. The use of regression models against a set of basins descriptors
allows the predicted L-moments to vary smoothly over the whole
descriptors domain, without any subdivision in sub-regions.

Although for higher-order L-moments a unique linear regres-
sion is still not able to completely describe the sample variability,
this is a step forward with respect to other approaches (for exam-
ple the ‘‘hierarchical’’ models) in which the higher-order moments
or L-moments are typically kept constant over large regions. By
avoiding the subjectivity of procedures that create regions and
estimate their homogeneity the model provides a ‘‘global’’ optimi-
zation rather than a ‘‘local’’ one.

The representation of sample data by L-moments avoids to force
the user to accept possible bad fittings related to the preemptive
choice of a probability distribution, and allows one to preserve
information contained in short samples, that otherwise would be
discarded. In the present work, eight stations out of 70 have less
than 20 data, and would probably be discarded in a traditional ap-
proach. Even though the importance of these short samples in the
whole data set is low for the higher-order L-moments, due to their
high variance, their preservation is important for ‘‘local’’ estima-
tion. In fact, our approach allows one to combine sample and regio-
nal predictions for the estimation of on-site frequency curve.

A final remark can be devoted to the inclusion of non
-systematic measurements in flood time series. In literature, non-
systematic data are commonly referred to historical flood, occurred
before the beginning of the measurement period. However, in the
Italian context, we often found time series with large gaps and
with some large events measured during this ‘‘ungauged’’ period.
In our procedure, these information can be interpreted as non-sys-

 1
0  2

0 

 5
0 

 2
00

 

 1
01

 

σQ

n

2 5 10 20 50 100 500

5
10

20
50

10
0

(a)

LCV

n

 0.1 

 0.15 

 0.2 

 0.25 

 0.078 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5
10

20
50

10
0

(b)

LCA

n

 0.15 

 0.2 

 0.25 

 0.3 

 0.094 

 0.094 

−0.2 0.0 0.2 0.4 0.6 0.8

5
10

20
50

10
0

(c)

Fig. 8. Comparison between regional and sample standard deviations for the index-
flood (panel a), LCV (panel b) and LCA (panel c). In each panel the thinner iso-lines
represent the standard deviation of sample estimators (in abscissa, based on the
sample of rQ, LCV and LCV respectively) and sample lengths n (in ordinate). Thicker
line represents the average of the regional standard deviation obtained in the case
study, and separate the area of the plot in which the (mean) regional variance is
lower than the sample one. For basins falling in the shaded area it is suggested to
used the sample estimate instead of the regional one and viceversa.
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s u m m a r y

Identification of the flood frequency curve in ungauged basins is usually performed by means of regional
models based on the grouping of data recorded at various gauging stations. The present work aims at
implementing a regional procedure that overcomes some of the limitations of the standard approaches
and adds a clearer representation of the uncertainty components of the estimation.

The information in the sample records is summarized in a set of sample L-moments, that become the
variables to be regionalized. To transfer the information to ungauged basins we adopt a regional model
for each of the L-moments, based on a comprehensive multiple regression approach. The independent
variables of the regression are selected among a large number of geomorpholoclimatic catchment
descriptors. Each model is calibrated on the entire dataset of stations using non-standard least-squares
techniques accounting for the sample variability of L-moments, without resorting to any grouping proce-
dure to create sub-regions. In this way, L-moments are allowed to vary smoothly from site to site in the
descriptor space, following the variation of the descriptors selected in the regression models. This
approach overcomes the subjectivity affecting the techniques for the definition and verification of the
homogeneous regions. In addition, the method provides accurate confidence bands for the frequency
curves estimated in ungauged basins.

The procedure has been applied to a vast region in North-Western Italy (about 30,000 km2). Cross-val-
idation techniques are used to assess the efficiency of this approach in reconstructing the flood frequency
curves, demonstrating the feasibility and the robustness of the approach.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

The evaluation of the frequency of flood events in ungauged
catchments is usually approached by building suitable statistical
relationships (models) between flood statistics and basins charac-
teristics, calibrated on a set of records of annual maxima. These
models are used to transfer the information available at the gauged
sites to the target basin, where only morphoclimatic catchment’s
characteristics are available. This type of procedure is called a re-
gional model, because it identifies a subset of basins, called region,
that is used as a pooling set where the information to be trans-
ferred to ungauged site resides. In standard regional models, the
basins, which are assumed to belong to a homogeneous region, do-
nate their (common) statistical properties of the flood frequency
curve to the ungauged basins that are assumed to fall in the same
region.

Various methods to achieve this goal have been proposed in the
literature (see for example the review by Cunnane (1988) and
Grimaldi et al. (2011)), differing to each other mainly on the basis

of the distribution used to describe the at-site data (see e.g.
Hosking and Wallis, 1997 for a bouquet of distributions), and on
the pooling criterion used for the delineation of regions. Several
techniques have been proposed for region delineation. Among oth-
ers, we can mention: cluster analysis and proximity pooling (Burn,
1990), hierarchical approaches (Fiorentino et al., 1987; Gabriele
and Arnell, 1991), neural network classifiers (Hall and Minns,
1999) and mixed approaches (Merz and Bloschl, 2005). For any
of these techniques the check for statistical homogeneity within
the regions is an important issue (Viglione et al., 2007; Castellarin
et al., 2008).

However, most of the standard statistical tools for the estima-
tion of the flood frequency curve in ungauged basins present lim-
itations. In particular, (i) the subdivision of the domain of
interest in homogeneous regions, and (ii) the choice of an a priori
probability distribution to describe the sample data, can be consid-
ered as limiting factors, due to the difficulties of managing estima-
tions where abrupt changes occur across regions, or distributions
demonstrate not to keep their properties inside and across regions.

Regarding the point (i), different approaches exist to create
homogeneous regions. For instance, regions can be created by
splitting in separated areas the geographical space or a multi-
dimensional space of the physiographic basin’s characteristics
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is preferable. When a sample is available, one can enter in the plots
and check if the point falls in the shaded area (sample standard
deviation lower that the regional one): in this case it is suggested
to use the sample estimate. Circles reported in Fig. 8 represent
the calibration set and put in evidence as, increasing the L-moment
order, the regional approaches become more reliable for short re-
cords, due to increased variance of sample L-moments estimators
with increasing L-moment order. For instance, the Ayasse basin
at Champorcher (which have a 29-years record, rQ = 9.9,
LCV = 0.266 and LCA = 0.274), has a sample rQind

equal to 1.8 and a
sample rLCV equal to 0.05, which implies that the corresponding
point falls in the gray area in Fig. 8a and b, i.e.for both Qind and
LCV it is preferable to use the sample estimates. Instead, the sample
rLCA , equal to 0.19, falls in the white area in Fig. 8c, i.e. the regional
LCA is more appropriate, because the (averaged) regional standard
deviation is 0.094.

In the light of the results of Fig. 8, one could take advantage of
the regional model to improve the local estimation of the flood fre-
quency curve, replacing sample L-moments with regionally-esti-
mated values whenever the regional estimates have smaller
variance. For the present case study, this applies to about 30% of
the LCV and about 80% of the LCA values.

5. Conclusions

The approach to the regional flood frequency analysis proposed
in this work aims at overcoming some limitations of the classical
methods based on (pooling) regions. Although some features of
our model already appeared in the scientific literature, the overall
conceptual framework is novel and useful for facilitating flood fre-
quency analysis where non-systematic or limited measurement
are available.

The method does not require to build up an at-site probability
distribution. The sample record is characterized by its L-moments,
that are used as the statistics necessary to reconstruct the complete
flood frequency curve, and that become the statistics to be regional-
ized. The use of regression models against a set of basins descriptors
allows the predicted L-moments to vary smoothly over the whole
descriptors domain, without any subdivision in sub-regions.

Although for higher-order L-moments a unique linear regres-
sion is still not able to completely describe the sample variability,
this is a step forward with respect to other approaches (for exam-
ple the ‘‘hierarchical’’ models) in which the higher-order moments
or L-moments are typically kept constant over large regions. By
avoiding the subjectivity of procedures that create regions and
estimate their homogeneity the model provides a ‘‘global’’ optimi-
zation rather than a ‘‘local’’ one.

The representation of sample data by L-moments avoids to force
the user to accept possible bad fittings related to the preemptive
choice of a probability distribution, and allows one to preserve
information contained in short samples, that otherwise would be
discarded. In the present work, eight stations out of 70 have less
than 20 data, and would probably be discarded in a traditional ap-
proach. Even though the importance of these short samples in the
whole data set is low for the higher-order L-moments, due to their
high variance, their preservation is important for ‘‘local’’ estima-
tion. In fact, our approach allows one to combine sample and regio-
nal predictions for the estimation of on-site frequency curve.

A final remark can be devoted to the inclusion of non
-systematic measurements in flood time series. In literature, non-
systematic data are commonly referred to historical flood, occurred
before the beginning of the measurement period. However, in the
Italian context, we often found time series with large gaps and
with some large events measured during this ‘‘ungauged’’ period.
In our procedure, these information can be interpreted as non-sys-
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Fig. 8. Comparison between regional and sample standard deviations for the index-
flood (panel a), LCV (panel b) and LCA (panel c). In each panel the thinner iso-lines
represent the standard deviation of sample estimators (in abscissa, based on the
sample of rQ, LCV and LCV respectively) and sample lengths n (in ordinate). Thicker
line represents the average of the regional standard deviation obtained in the case
study, and separate the area of the plot in which the (mean) regional variance is
lower than the sample one. For basins falling in the shaded area it is suggested to
used the sample estimate instead of the regional one and viceversa.
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methods based on (pooling) regions. Although some features of
our model already appeared in the scientific literature, the overall
conceptual framework is novel and useful for facilitating flood fre-
quency analysis where non-systematic or limited measurement
are available.

The method does not require to build up an at-site probability
distribution. The sample record is characterized by its L-moments,
that are used as the statistics necessary to reconstruct the complete
flood frequency curve, and that become the statistics to be regional-
ized. The use of regression models against a set of basins descriptors
allows the predicted L-moments to vary smoothly over the whole
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Although for higher-order L-moments a unique linear regres-
sion is still not able to completely describe the sample variability,
this is a step forward with respect to other approaches (for exam-
ple the ‘‘hierarchical’’ models) in which the higher-order moments
or L-moments are typically kept constant over large regions. By
avoiding the subjectivity of procedures that create regions and
estimate their homogeneity the model provides a ‘‘global’’ optimi-
zation rather than a ‘‘local’’ one.

The representation of sample data by L-moments avoids to force
the user to accept possible bad fittings related to the preemptive
choice of a probability distribution, and allows one to preserve
information contained in short samples, that otherwise would be
discarded. In the present work, eight stations out of 70 have less
than 20 data, and would probably be discarded in a traditional ap-
proach. Even though the importance of these short samples in the
whole data set is low for the higher-order L-moments, due to their
high variance, their preservation is important for ‘‘local’’ estima-
tion. In fact, our approach allows one to combine sample and regio-
nal predictions for the estimation of on-site frequency curve.

A final remark can be devoted to the inclusion of non
-systematic measurements in flood time series. In literature, non-
systematic data are commonly referred to historical flood, occurred
before the beginning of the measurement period. However, in the
Italian context, we often found time series with large gaps and
with some large events measured during this ‘‘ungauged’’ period.
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flood (panel a), LCV (panel b) and LCA (panel c). In each panel the thinner iso-lines
represent the standard deviation of sample estimators (in abscissa, based on the
sample of rQ, LCV and LCV respectively) and sample lengths n (in ordinate). Thicker
line represents the average of the regional standard deviation obtained in the case
study, and separate the area of the plot in which the (mean) regional variance is
lower than the sample one. For basins falling in the shaded area it is suggested to
used the sample estimate instead of the regional one and viceversa.
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results can be ascribed in part to the high uncertainty
of the sample higher-order L-moments estimated on
short data records. This uncertainty prevents correct
estimation of the parameter α and of the bounds of
the validity domain, thus deteriorating the quality of
the results obtained with the ASE approach: the same
effect influences the size of the domain of validity of
the ASE approach, with Dlim decreasing with increas-
ing order of the L-moment. In our case study, the
domain of validity becomes so small that there are
not enough pairs of basins included within the thresh-
old distance that can be used for a robust calibration.
Lack of data not only affects the sample uncertainty,
but also makes it difficult to investigate the complex
mechanisms of propagation of the second- and third-
order L-moments. The available database cannot sup-
port a detailed analysis of such mechanisms, making
the uncertainty related to the “model error” impossi-
ble to estimate, and hampering the applicability of the
procedure.

4 MODEL COMPARISON

Kjeldsen and Jones (2007) developed a similar
approach (hereafter the KJ approach) to locally
improve the predictions coming from a regional
model. This approach has been rediscussed (Kjeldsen
and Jones 2009) and applied also in Kjeldsen and
Jones (2010). Although the equation we use to trans-
fer the information is basically the same as that of
the KJ model, the two implementations are based
on rather different ideas. In particular, Kjeldsen and
Jones (2007) propose the model:

Pt = Rt

(
Sd

Rd

)αKJ

(12)

where αKJ is an exponent dependent on the geograph-
ical distance of the centroids of the donor and target
basins. The donor basin is always selected as the
geographically-closest gauged basin. To evaluate the
suitability of these approaches for application in the
present case study, a comparison was carried out.

To evaluate αKJ, the KJ model requires the esti-
mation of the cross-correlation coefficient of the
model errors. As a first approximation, and for prac-
tical purposes (see Kjeldsen and Jones 2007), it can
be assumed that αKJ depends on the distance from the
donor site following the cross-correlation of annual
maxima rt,d. This approach applies to all the tar-
get sites, even if for large donor–target distances the
correction is negligible, because αKJ tends to zero.

A special case of equation (12), reported by Kjeldsen
and Jones (2007), considers αKJ = 1, provided the
correction applies only for basins within a limit-
distance (i.e. only for highly-correlated basin pairs).
Beyond the limit-distance, defined on the basis of the
correlation function, only the regional model is used.

In our case study, the regional model does not
provide the cross-correlation function of the model
errors, and the cross-correlation of annual maxima
cannot be safely estimated over the considered area
because the samples used are sparse in space and not
completely overlapping in time. Moreover, the cross-
correlation function of annual maxima is expected
to decay very quickly, due to the high topographic
and climatic heterogeneity in the case study area.
To overcome this problem, an iterative procedure is
adopted to calibrate the KJ model: the limit-distance
is assumed to be known, with varying values from
1 to 200 km; the model is applied correcting only
the within-limit pairs of target–donor basins; finally
a comprehensive error index is computed. In this
way, the most appropriate limit-distance is found to
be 8 km, which is the distance that allows one to
improve most of the estimates. This limit allows us
also to roughly reconstruct the correlation function
in the form of a negative exponential. Kjeldsen and
Jones (2007) found the correlation function rt,d =
exp(–0.016DC) (DC being the distance between basin
centroids) valid for their case study, with the max-
imum distance for which the model applies cor-
responding to rt,d = 0.5. Assuming this value is
valid also in our case study, and considering the
limit-distance of 8 km, the correlation function is re-
evaluated as rt,d = exp(–0.087DC), showing a faster
decay than the Kjeldsen and Jones case study (which
may be sensible, due to the larger meteorological vari-
ability in the study area compared to the UK). This
result is necessary for applying the general version of
the KJ model (equation (12)).

At this point, some clarifications about the ASE
approach are necessary before performing the com-
parison. In fact, the ASE and the KJ models are based
on rather different hypotheses, and slight modifica-
tions of the ASE approach are necessary:

• while the KJ model is designed to work with log-
transformed variables, our method can be directly
applied to the native regionalized variable (e.g.
the index flood in the application of Section 3).
To make the comparison more direct, here the
reference variable for the ASE model is set to
log(Qind).
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s u m m a r y

This paper presents a revised procedure for predicting the index flood in ungauged UK catchments based
on a revised data-transfer methods. Using annual maximum peak flow data from 602 catchments in the
UK, the performance of hydrological regression models linking the (log) index flood to a set of (log) catch-
ment descriptors is investigated and compared to the benefit of enhancing the regression-based
estimates with data-transfer from a gauged site that is either (i) geographically close, (ii) considered
hydrologically similar, or (iii) both (i) and (ii). The study compares the performance of two regression
models when combined with data-transfer: (i) a comprehensive model with four catchment descriptors,
(ii) a simple model using only catchment area as an explanatory variable. The results show that the sim-
ple regression model benefits more from additional data-transfer than does the more comprehensive
model. It is shown that, when data-transfer is included and when the ungauged and the gauged site
are extremely close, the two models perform equally well. In cases where the nearest gauged catchment
is 1–20 km away, data-transfer allows the simpler model to provide predictions which are only moder-
ately worse than those from the comprehensive model, whereas if data-transfer is not used the simpler
model is substantially worse than the comprehensive one. Little or no benefit was gained by selecting the
gauged site by considering similarity of catchment area. Using data-transfer reduces the spatial correla-
tion in the regression residuals. The results presented in this paper are believed to be of special interest to
hydrologists working in regions where only a limited subset of catchments descriptor is routinely made
available.

! 2010 Elsevier B.V. All rights reserved.

Introduction

The index-flood method (Dalrymple, 1960) is a widely applied
method for flood frequency estimation in ungauged catchments
and is the standard method for flood frequency analysis in the
UK as described in the Flood Estimation Handbook (FEH) published
by the Institute of Hydrology (1999). The method assumes that
annual maximum series of peak flow data within a cluster of catch-
ments (or pooling group) considered hydrologically similar are
identically distributed except for a multiplicative scaling parame-
ter known as the index flood. In its application to the UK, the
FEH defines the index flood as the median of the annual maximum
series, which is slightly different from the more traditional choice
of the mean of the annual maxima. The objective of the FEH ap-
proach was to be able to estimate the index flood for all catch-
ments in the UK (England, Wales, Scotland and Northern Ireland)
larger than 0.5 km2. For any ungauged catchment, the index flood
is estimated using a combination of a multiple regression model,
which links the index flood to a set of catchment descriptors, with

data-transfer from appropriate gauged sites. Subsequently, the
second stage of the index-flood method (estimation of the scaled
distribution for the ungauged site) is undertaken by estimating
the higher order L-moments using a region-of-influence approach
based on a pooling group of hydrologically similar catchments.
The index flood regression model, the data-transfer and the pool-
ing group procedure have each been updated recently (Kjeldsen
and Jones, 2007, 2009a,b).

In applied hydrological analysis, an important aspect of the in-
dex-flood method is the estimation of the index flood itself for
ungauged catchments. A review of recent advances in index flood
estimation was presented by Bocchiola et al. (2003), ranging from
simple at-site statistics through to the use of Monte Carlo simula-
tions of complex coupled modelling systems. In a study comparing
different methods for estimating the index flood at ungauged sites
in Northern Italy, Brath et al. (2001) found that a regression model
linking the index flood to a set of catchment descriptors provided
the most efficient estimates of the index flood at ungauged
catchments. Such regression models are widely used and numer-
ous examples are available in the hydrological literature (Tasker
and Stedinger, 1989; Meigh et al., 1997; Kjeldsen et al., 2001),
and are often based on only a limited number of explanatory
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Abstract Streamflow at ungauged sites is often predicted by means of regional statistical procedures. The standard
regional approaches do not preserve the information related to the hierarchy among gauged stations deriving from
their location along the river network. However, this information is important when estimating runoff at a site
located immediately upstream or downstream of a gauging station. We propose here a novel approach, referred to
as the Along-Stream Estimation (ASE) method, to improve runoff estimation at ungauged sites. The ASE approach
starts from the regional estimate at an ungauged (target) site, and corrects it based on regional and sample estimates
of the same variable at a donor site, where sample data are available. A criterion to define the domain of application
around each donor site of the ASE approach is proposed, and the uncertainty inherent in the estimates obtained
is evaluated. This allows one to compare the variance of the along-stream estimates to that of other models that
eventually become available for application (e.g. regional models), and thus to choose the most accurate method
(or to combine different estimates). The ASE model was applied in the northwest of Italy in connection with an
existing regional model for flood frequency analysis. The analysed variables are the first L-moments of the annual
discharge maxima. The application demonstrates that the ASE approach can be used effectively to improve the
regional estimates for the L-moment of order one (the index flood), particularly when the area ratio of a pair of
donor–target basins is less than or equal to ten. However, in this case study, the method does not provide significant
improvements to the estimation of higher-order L-moments.
Key words streamflow statistics; river network; information propagation; uncertainty

Approche de la propagation des statistiques de débit le long d’un réseau hydrographique
Résumé Les débits des rivières dans les sections non-jaugées sont souvent estimés par des procédures statistiques
régionales. Dans les méthodes régionales classiques aucune information relative à la hiérarchie géographique
des stations placées le long du réseau hydrographique n’est retenue. Cette information est pourtant importante
lorsqu’on estime des débits pour un site situé immédiatement en amont ou en aval d’une station de jaugeage.
Nous proposons ici une nouvelle approche, appelée Estimation au fil de l’eau (EFE), afin d’améliorer l’estimation
des débits aux sites non jaugés. L’approche EFE commence par l’estimation régionale en un site non jaugé (site
cible), qui est ensuite corrigée à partir des estimations régionales et de l’échantillon de la même variable en
un site donneur où les observations sont disponibles. Un critère particulier a été proposé pour définir le domaine
d’application de l’approche EFE autour de chaque site donneur, ainsi que pour évaluer l’incertitude des estimations
obtenues. Ceci permet de comparer la variance des estimations de l’EFE à celle des autres modèles statistiques
éventuellement applicables (par exemple, les modèles régionaux classiques), et donc de choisir la méthode la plus
précise (ou de combiner différentes estimations). Le modèle EFE a été appliqué dans le Nord-Ouest de l’Italie,
dans le cadre d’une méthode existante d’analyse régionale de probabilité des crues. Les variables estimées aux sites
non jaugés sont les premiers L-moments de la crue annuelle. L’application démontre que l’approche EFE peut être
utilisée efficacement afin d’améliorer les estimations régionales du L-moment d’ordre un (l’indice de crue). Ceci
est vrai en particulier lorsque le rapport des surfaces des bassins d’une paire donneur-cible est inférieur ou égal à
dix. Dans notre étude de cas la méthode ne démontre pas d’amélioration importante de l’estimation des L-moments
d’ordre supérieur.
Mots clefs statistiques des débits; réseau hydrographique; propagation de l’information; incertitude
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Fig. 7 Maps of applicability of ASE and KJ (simplified type) models for the case study area. The highlighted part of the
drainage network represents the points where the models are applicable making use of the donor stations represented by the
code numbers.

KJ approach (both versions), since the overall errors
(see MAE and RMSE reported over the plots) are
smaller. All the models are able to reduce the overall
error with respect to the pure regional approach, as is
apparent from the MAE and the RMSE (labelled R)
in Fig. 6.

The very different nature and applicability of the
ASE and KJ models can be examined considering
the river reaches wherein the models can actually be
applied. For the river network in the study region,
the results are mapped in Fig. 7, where the domain
of applicability is represented as a thicker line. This
representation highlights the different results obtained
for the propagation of information: for a highly
heterogeneous area like the case study, the along-
stream information propagation appears more suitable
because it has a larger area of applicability.

5 DISCUSSION AND CONCLUSIONS

The Along-Stream Estimation (ASE) approach pro-
posed herein hinges on the river structure to perform
an information transfer towards ungauged basins.
This integrates standard regional procedures because
it is based on local relationships, as the estimation
is performed considering only nested catchments.

Along-stream and regional estimates can therefore
be combined to develop a general framework for
improved evaluation of a given hydrological variable,
as well as its variance at ungauged locations.

In general, when two or more models are avail-
able for the same purpose, one can consider one of
the following scenarios:

• Model competition: the results of different mod-
els (in our work “propagated” and regional pre-
dictions) can be evaluated separately and then
compared, in order to identify which model is
more efficient in the reconstruction of the vari-
able of interest. In the case study presented here,
propagated and regional predictions show different
reliability, depending on the location of the tar-
get site and, in particular, on its distance from the
donor site. From this perspective, the aim of the
propagation of information is to identify an alter-
native procedure that is more appropriate for the
analysis at some ungauged basins.

• Model cooperation: the output of one model is
used to initialize the other model. In this work,
for instance, the regional estimate is used as an
additional parameter in the propagation function
and thus contributes to the final along-stream
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Fig. 3 Average error (RMSE of dimensionless errors ε{t,d})
within the domain of validity considering only the prop-
agated estimate (–––) and the operative ASE prediction
(- - - -). The global average error of the regional model is
indicated, for reference, by a dotted line.

the root mean squared errors (RMSE) of the nor-
malized prediction errors are plotted as a function
of the area ratio of the donor and target basins. The
normalized errors are defined as:

ε{t,d} = (prediction){t,d} − St

σst

(11)

where “prediction” indicates the approach used to
make the estimation; the residuals are normalized by
σst to account for the sample uncertainty at the target
site, which can be relevant if the donor has a short
record.

In the first instance, Fig. 3 allows one to compare
the behaviour, in terms of RMSE, of the opera-
tional ASE estimator of equation (3) (in the following
referred to as RMSEASE), against the simple propaga-
tion of information of equation (2) (RMSEPRO). Both
approaches were applied over all possible pairs {t,d},
but only within the distance limit. The last point of the
trial-and-error procedure is relative to a distance limit
of 5.03 (equivalent to an area ratio of about 150) that
includes all the available basin pairs, i.e. it is equiva-
lent to an unbounded domain of validity. In Fig. 3, the
global RMSE computed considering only the regional
predictions over the whole data set, RMSEREG, is also
reported for comparison.

Some important results can be deduced from the
RMSEPRO curve: it presents a clear increasing trend,
with increasing threshold distance; and RMSEREG is
equalled for an area ratio between 10 and 20. This

indicates that the use of a simple propagation of
information as in equation (2) is effective only for
relatively short distances.

More important, Fig. 3 shows the effectiveness
of the ASE method relative to the simple propagation
approach; in fact, the RMSEASE is always lower than
the RMSEPRO, meaning that the selection criterion in
equation (3), based on the standard deviation of the
propagated and regional estimates, works properly;
in other words, this is confirmation that, on average,
the operational model is able to correctly select the
best approach (regional or propagated). As expected,
for large area ratios, the ASE performances approach
those of the regional model because σPt increases and
the regional model is selected most of the time in
equation (3). Thus, the ASE model has better perfor-
mances compared to the regional model alone, even
when there is no distance limit.

These results highlight that the use of a restricted
domain of validity improves the effectiveness of the
propagation of information and, as a consequence, the
whole ASE framework. However, a restricted domain
of validity limits the applicability of the ASE method
to only the closest target basins.

The optimal threshold distance can thus be seen
as the best compromise between two opposite effects:
on the one hand, the use of a small threshold dis-
tance Dlim leads to better estimation results, but the
applicability of the ASE approach turns out to be lim-
ited to only a few basins. On the other hand, larger
domains of validity increase the errors and decrease
the effectiveness of the operational estimator.

The search for an optimal Dlim value has been
performed iteratively for this case study, considering
the calibration set of a basin as representative of the
real application context. For instance, very good per-
formances can be achieved with Dlim = 0.81 (equal
to an area ratio of about 2.25), but only 11.3% of
the considered basins would benefit in this case of
the along-stream model. The remaining 88.7% of the
basins would not be considered. Given this perspec-
tive, we selected the “optimal” distance as a balance
between these two effects; this corresponds to extend-
ing the area of influence to basins that have an area
of between 1/10 and 10 times the area of the donor
basin, i.e. for pairs of basins whose areas differ by, at
most, one order of magnitude.

The results reported in Fig. 3 show the global
performances of the method. A more detailed inves-
tigation is represented in Fig. 4(a), in which each
normalized error of the operational model is com-
pared to that of the regional (reference) model. The
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