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Milestones: the large assimilation systems

-': (the three most quoted papers)
:%_ Atmosphere

Quarterty Journal of the Rayal Metearological Socety Q.| B Meteoral. Soc. 137: 553-597, April 2011 A

Royal Meteorological Society

- \.uwm =3
T The ERA-Interim reanalysis: configuration and performance of

the data assimilation system

D. P. Dee™, 5. M. Uppala®, A. . Simmons®, P. Berrisford”, P. Poli*, 5. Kobayashi®,
U, Andrae®, M. A, Balmaseda®, G, Balsamo®, P, Bauer®, P, Bechtold®, A. C. M. Beljaars®
DO cu m e nts by Yea r L. van de Iir:rg‘l, J. Bidlot*, N. Bormann®, C. Delsol®, R. Dragani®, M. Fuentes®, A. ]. Geer
L. Haimberger®, 5. B. Healy", H. Hersbach?, E. V. Holm®, L. Isaksen®, P. Killberg®,
M. Kishler, M. Matricardi®, A, P, McNally*, B. M. Monge-Sanz', 1.-I. Morcrette®, B.-K. Parke,
C. Peubey®, P. de Rosnay®, C. Tavolato®, 1.-N. Thépaut® and F. Vitart!
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Home = BAMS = March 2004 = The Global Land Data Assimilation System

w0 Oceans

JOURNAL OF GEDPHYSICAL RESEARCH. V0L, 9, NO. TS5, PAGES 10,143-10, 162, MAY 15, 1954

8 The Global Land Data Assimilation System

M. Rodell, P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B.
Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin?”, J. P Walker, D. Lohmann, and D. Toll

Sequential data assimilation with a nonli quasi-geostrophic
model using Monte Carlo methods to forecast error statistics

Geir Evensen Ih_rrpsf/dof orq/mz;; EYS/BAMS—SSfS—SSf 1 6 O 9 C |t a t | ons

Nansen Enviroemental and Remote Sesing Center, Bergen, Narway March 2004
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Abstract. A new sed on
forecasting the errc an sclving
b 2702 C|tat|ons S
equation used in tf d in the
extended Kalman . . © ermor
i equation, is Ope ies can be handled as long

as the ocean model is well posed W‘:]] known numerical instabilities associated with the
error covariance equation are avoided because storage and evolution of the error covariance
matrix itself are not needed. The results are alse better than what is provided by the
extended Kalman filter since there is no closure problem and the quality of the forecast error
statistics therefore improves. The method should be feasible alio for more sophisticated
primitive equation models. The computational load for reasonable accuracy is enly a
fraction of what is required for the extended Kalman filter and is given by the storage of,
say, 100 model states for an ensemble size of 100 and thus CPU requirements of the order
of the cost of 100 model integrations. The proposed method can therefore be used with
realistic nonlinear ocean models on large domains on existing computers, and it nalso well
suited for parallel computers and clusters of workstations where each p
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- Milestones: focus on hydrology
(among most quoted papers)
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Soil Moisture

Home > MWR > January 2002 > Hy gic Data A with the le Kalman Filter

& Hydrologic Data Assimilation with the Ensemble

Kalman Filter 506 citations

Rolf H_Reichle*, Dennis B_ McLaughlin, and Dara Entekhabi
Ralph M. Parsons Laboratory, Department of Givil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts

Next Article =

:‘.II International Journal of Applied Earth Observation and ‘“-

Geoinformation M
i a

WA Dorigo® 2278 R Zunta-Milla= ' AJW

'olume 9, Issue 2, May 2007, Pages 165-193 —

A review on reflective remote sensing and data assimilation
techniques for enhanced agroecosystem modeling

de Wit" J. Brazile %, R. Singh ®, M.E. Schaepman =
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Trends in earth observation satellites 100
Data reflect 488 earth observation satellites launched since 1972 by commercial and govern
providers (excluding military). We followed methods established in (5) and added satellites from-

of Concerned Scientists database and public launch information from SpaceFlightNow and Pl 0 1971
See the supplementary materials for details.
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two year

strongly linked to Moore's law.
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visualizations and research on this topic Ucensed under CC-BY-SA by the author Max Roser.



One working
definition of data
assimilation

The set techniques
the combine data
with some underlying
process model to
provide optimal
estimates of the true
state and/or
parameters of that
model.

Model (and its ‘non- Model inversion

observable’ parameters)

States
Observation

State estimation
Data

Bayesian >i::timcltion

Improved

State estimation



Inverse problems: Reasoning backwards

Most people, if you describe a train of events to them will tell you what
the result will be. There are few people, however that if you told them a
result, would be able to evolve from their own inner consciousness
what the steps were that led to that result. This power is what I mean

when I talk of reasoning backward.
Sherlock Holmes,

Measurements, A Stud)/ in Scarlet,

d
o Sir Arthur Conan Doyle (1887)
A forward problem

Model Observables
/ Aninverse problem

Physical properties,
unknowns




Key underlying concept: both data and model have errors,
hopefully of different origin, so model and data can
complement each other to reduce the overall uncertainty




Historic approaches to probability

Von Mises vs. Bayes

1883-1953

The frequentist approach:

Strictly objective probabilities
Predictions are repeated in
time, many times

Prediction erros can be
precisely described by statistical

means

1702-1761

The Bayesian approach:

Proabality as ‘degree of belief” (largely
subjective)

Predictions are sporadic in time (even
once in a lifetime)

Utility comes on ...



state variable

The forecast—analysis cycling

truth
observations
forecast
analysis

| O

time

How to perform the analysis for a control
state variable that is not observed?
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Hydrologic Systems

8.1 THE STATE-SPACE REPRESENTATION OF A
STOCHASTIC LINEAR DYNAMIC SYSTEM

Many physical and geophysical systems can be represented by linear differen
tial equations of the form

| \ [
X)L g4 )
“JI“ h Nll"l - !

+a, ag( 1) X(1) = L{)U(r).

8.3 THE KALMAN FILTER
8.3.1 A Bayesian Approach for the Discrete Filter

Schweppe (1973) derives the filtering algorithm for the dynamic discrete linear
system of Eqg. (8.25) with discrete observations Lik)=H{k)X(k)+ V(L) using
the static-filter results of Chapter 7. The idea is to combine repetitive observa-
tions of a state vecltor X(&).



iscrete
inear
aussian

Recursive
Bayes
Estimation

A New Approach to Linear Filtering
and Prediction Problems’

The classical filtering and prediction problem ix re-evamined wsing the Bode-
representation of random procesves and the “siate transition” method of
malyais af dymamic syems. New results are:

(1) The farnmiason and methods of sohuion of ahz,rmum apply withans mdrjka-
tion 1o stationary and v statistics and ta 15 and infinite-
memory filters.

2} A manlinear difference or differential) equasion is derived far the covariance
matrix of the optimal extimation error.  From the solmion of this equation the cos
efficients of the difference (or differential) equation of the optimal linear filier are ab-
tained witheut further calculatians.

(3) The filtering probien is shown 10 be the dual af the moisesfree regularor prablem.

The new method developed here is applied 10 fwo wellsknown problems, confirming

and extending cariier resuls.
fram first principles: basic
{ppendi.

R. E. KALMAN

Resaarch Instituts tar Advancod Study, 2
Baltimora, Ma.

Least-squares estimation:
from Gauss to Kalman

Kalman

discussion is largely selfxcontained and proceeds
concepis af the theory of random processes are reviewed in the A

Introduction

A MPORTANT class of theorstical and  practical
preblems m commumication and control i of 3 statestical mature.
Such problems are: (i) Prediction of random sigrals, (i) separa-
tion of random sigrals from random noise; (i) detection of
signals of known form (pulses, smusoids] i the presence of
random nase.

In his pioneering work, Wiener 1] showed that probilems (1)
and (1) lead o the so-called Wiener-Hopf integral equation; he
also gve o methed (spectral factorization) for the sclutson of this
integral equation in the practcally importst special case of
stanonary smrsscs and ratonal spectra

Many estensians and generalizations followed Wisner's basic
work, Zadeh and Razeini sobved the fmstememery case [2)
Concurrently and muependently of Bode and Shanncn (3], they
alsn pve a simplified methed [2] of salution. Baoton discussed
the nanststionery Wisner-Hopl equation [1). These resules are
row i standard lexts |5-6]. A somewhet diflrent approsch slong
these main lines has been given recently by Darlington [7]. Tor
extensions o sampled sigrals, see, e.g, Franklm [3], Lees [9]
Anotber appraach based on the eigenfunctions af the Wiensr-
Hopf equation (which applies alse to nonsttiansry problems
whereas the preceding methods i general don'l), has been
pioneered by Davis [10] and spplied by many ohers, e,
Shinbeot 1], Blum [12], Pugachev [13], Salodavaskoy [14].

Inall these warks, the obyective is 10 oblain the specification of
a linear dyramic system (Wicner filter) whach sccompleshes the
predsction, separation, oe detection of 3 random sigral *

' This research was: the U 5. Air Fosce Otffice of
el Eeprehs mmu Aﬂ"’ln;ﬂ}Jﬂ
712

e bckets sz Rellsnes aeod of pups.
4 OF course, in general these tasks may be done etter by noalincar
s At oo, Baaeves il o g K shout s o s
{hath thearetically and practically) these nanlinear fite
Cortrinued b the nsiunens a2 Regulairy Division and preseed
o Resloes Condereage, March 3 Agel 2, 1955,

Adanuscripn recerved m "\ nm.iqmnx khmm\ 24, 1989 l’.\per
Mo, SalREA11.

Present methods fixr solving the Wiener problem are subect o
2 mumber of limuations which seriously cuntail their practical
usefulness

(1) The aptamal filter is specified by its impulse response. 1t is
ot asimple task o synthesse the flter from such data.

(2) Numerical determination af the optimal mmpuilse response &
aften quite involved and poorly susted to machine computstion.
The siustion gets rapadly worse with mereasing complexity of
the prablem.

{3) Impartant generalizations (e, growmng-memary filters,
nonstationary. prediction) require new derivations, frequently of
considerable difficulty to the nonspecialist

{4) The mathematics of the derivations are not b L
Fundamen and their tend 1o be
obscured.

This paper introduces a new lack at this whole sssemblage of
problems, sidesepping the dilficulties st mentioned, The
fiollowing are the highlzghs of the

(5) Optimal Estimates and Orthogonal Projections. The
Wiener problem is approached from the pomnt of view of condi-
tioeal dastributions and expectations, In this way, basic facts of
the Wiener theory are quickly abtained; the scope of the results
and the fundamental assumptions appear clearly. It & seen that all
stanszical calculanons and results are based on first and second
order aversges, no other sttistical dats are needed. Thus
difficulty {4) s elimmated. This method is well known in
probability theory (see pp. 7578 and [48-153 of Doob [15] and
. 455—464 of Loéve [16]) bt has not yet been used extensively
in engincering.

(6) Models far Random Frocesses. Following, in particular,
Bode and Shannon (3], arbitrary random sigrals are represented
(up o secand order average staiistical properties) & the outpet of
a linear dynamss system excited by mdependent o encorelated

random signals (-
engineerng applications of the Wiener theary [2-7). The
approach ken here differs from the conventional oo only in the
way in which linear dynamic syslems are described. We shall

words, linear systems will be specified by systems of firsworder
difference or differential) equstions.  This point of view s

Ti i of the ASME-Joumnal of Basic

82 (Series 0): 35-45_Copyright © 1960 by ASME |

Filter

The Gaussian concept cf estimation by least squares, originally

(Copyright (c) 2004 |EEE. Reprinted from
IEEE Spectrum, vol. 7, pp. 63-58, July
1970. This material is posted here with
lpermission of the IEEE. Such permissicn of

stimulated by astronomical studies, has provided the basis for a | et ooy way mply E2E

number of estimation theories and techniques during the
ensuing 170 years—probably none as useful in terms

of today's requirements as the Kalman filter

H. W. Sorenson university of California, San Diego

This discussion is directed to least-squares estimation
theory, from its inception by Gauss! to its modern
form, as developed by Kalman.2 To aid in furnishing
the desired perspective, the contributions and insights
provided by Gauss are described and related to de-
velopments that have appeared more recently (that is,
in the 20th century). In the author's opinion, it is en-
lightening to consider just how far (or how little) we
have advanced since the initial developments and to
recognize the truth in the saying that we “'stand on the
shoulders of giants."

at Chipe! Hil.Intemalor personl use of
this material is permitted. Howe
[permission fo reprintirepublish e materil
- Pebvesticins o prosnegioem mpomas
for craating new collective works for resale
lor redistribution must be obtained from the
IEEE by writing 1o pubs-permissions(@iece.
lorg. By choosing o view this document,

you agree o all provisions of the copyright
laws profecting it.

have made use of since the year 1795, has lately been
published by Legendre in the work Nowvelles méthodes
pour la determination des orbites des cometes, Paris, 1806,
where several other properties of this principle have been
explained which, for the sake of brevity, we here omit.™
This reference angered Legendre who, with great indigna-
tion, wrote to Gauss and complained? thet “Gauss, who
was already so rich in discoveries, might have had the
decency not to appropriate the method of least-squares,”™
It is interesting to note that Gauss, who is now regarded
a: one of ﬂ:c gmnls" ol’ rnalhcrnaucs J'clt that he had




Discrete Kalman Filter

Estimate the state x € R™ of a
linear stochastic difference equation (model)

X = Axk_1 + Buk + Wi _1

where wis a N(0, Q) process noise (model error) with zero mean
and covariance matrix Q € R"™ x R",

given measurements (data) z € R™ related to states through the
linear observation equation

Zy, — ka +vk

where v is a N(0, R) measurement noise (data error) with zero
mean and covariance matrix R € R™ x R™



Estimates

X, € R"is the estimated state at time step k

X, € R"™ ... after prediction, before observation (prior, background)

52; € R™ ... after prediction and observation (posterior, analysis)

Errors

e

e, = X —Xg, with covariance matrix Py = E|ej e}’ |

ey = X, — X1, with covariance matrix Pj = E|ejfe}"|

Goal of Kalman Filter

- ] eams




Time Update (Prediction)

Xk = Axp_1 + Bup +wy_4 52,: = A.’x\;';_l + Buk

Q =E[ww']

Z, = ka + 1%
R = E[vvT]

PI: — AP]-I(__lAT + Q & Can you derive this, at least

in the scalar case?

Kalman Gain

Kk = PI;HT (HPI;HT + R)_l & Proportional to .....?

Measurement Update (Analysis)

, .Innov‘ation
Xy = X + Ky (2, — HX)

PI-I(- — (I — KRH)PI: & How this motivates the term

‘Kalman Gain’?



Observations

Estimate
nll-

A

Error covariance propagation

Estimation error

> Adapted from Reichle, Adv. Water res., 2009.

Kalman Filter main hypotheses:
\x  Linear model & observation equations
LaA)

e Gaussian error distributions
(needed to ensure min|| P} ||)



A p ure fl |t erin g €Xam p | €. Vol 29, No. 10,20 buus 2008, 366,952 @ s
Filte rin g CIO u d- CO n ta m in a te d LS T A dynamic cloud masking and filtering algorithm for MSG retrieval of
observations from MSG-SEVIRI RN ST AR B0

Civil and Environmental Engineering Department, University of Florence, via 8. Marta
3. Florence. Ttaly

Incoming short-wave radiation
Tk = aka_l + ,BSk + %%

Tk = LSTk + Wi
N\

SEVIRI Land Surfce Temperature retrievals, 3km res., 30’ revisit

Partial relaxation of Gaussian measurement error 01 n

hypothesis: - PDF (wy)

* w;, comes from the mixture of a ‘standard’
N(0, R*) Gaussian noise ad a ‘much larger’ (non-0
mean!) cloud contamination error. 00s Cloud

e Which error component is active at time k can be .. contamination
‘detected’ with the innovation: D \/\

R, = R lf Tk_ - LSTk < 5(R* + Q) e ZDOKM 0 50
“ oo otherwise



co otherwise < Kalman Gain is zero in this case,
and the observation is discarded!

* . — % 1

02 =R*/2=1°k ; §=25

Model prediction

§ yl7o° |4 l{ @ \Valid LST
B . :
‘% : rl, i O Cloud
3 contaminated
(not used)
<) Reliable Analysis

*I\ (P <R*+Q)

06:00 0900 1200 1500 1800 21:00 0000 O03:00 0600 0900 1200 1500 1800
Central Europe Local Tima [UTC-1)

288}




Table 1. Amount of validated LST estimates with different cloud-masking algorithms, as a

percentage of the 333 724 total land pixels at SEVIRI resolution of the 28 ground-truth

MODIS-based maps used for validation, and corresponding error statistics based on
validation pixels with less than 5006 MODIS cloud cover.

Owver all Owver all validation pixels
validation with less than 50%
pixels MODIS cloud cover EMSE (K)y R
MODIS + Static 100% (533 724) 67.1% (358 390) 0 1.0
SEVIRI + Static 49.8% (265 911) 44.9%, (239 492) 3.25 0.52
SEVIRI+CMKF 54.8% (292 569) 48.3% (257 651) 319 0.59
(retained raw
GSW estimate)
SEVIRI+CMKF T8.3% (417 B46) 60.7% (324 171) 3.33 0.54
(valid posterior
cstimate)
1m T 1 T 1 T T 1 T 1 L
an : CMKF - final est. J
o *
3 CMKF - valid meas. !
g 70 ' : : : !
8 b i : : H :
"2:" 60
o
s 0 ' Static
— [ '
9 4
bS]
® 30
20
10}

a 10 20 30 40 50 B0 70 80 a0 100
% of cloud cover (from MODIS)

LST [K] - 24/06/2004 10:30 UTC
- W i

384+
382
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arr
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3686

Figurc 5. Enlargement of the map shown in figure4 over Sicily. Boxed pixels identify
regions where the LST retrieval was based on model prediction only. having recognized the
GSW estimates as being too cloud contaminated.

Validation with MODIS



Extended Kalman Filter

Non-linear model and/or X = F(xp_q,ug) + Wi_q
measurement equation: z, = G(xy) + vy

Linearization (Jacobians) to P, = AP;_ AT +Q

ropagate covariances
PTOPaE K, = P;H'(HP, H" + R)™1

P{ = (I - K H)P;

oh 991 991
d0x4 0x, 0x4 0x,
A=]J(F)=| : : H=J(G)=| : ", :
Ol .. Oh 99n . 99n
0xq x| | 0x4 dx, .

é May quickly diverge (K, — 0, 00) if the system is

‘really’ non-linear



Ensemble Kalman Filter

1. Model forecasts A ‘smart’ evolution of the
Unscented Kalman Filter ...

Observations

Non-linear properties of both model and measurement

equations are fully retained, by:
- Heuristic sampling from a multidimensional Gaussian

distribution;
- Not explicitly estimating the prior model error covariance Py,

(the step that required linearization in the Ext. KF)



Initialization

o ege 14+ o2+ M+ What choices can be made
M initial ensemble members {X;", X", ..., X; hore? . Based on what?

Ensemble Prediction

Explicit, sampled

L Sl Si+ from N (0, Q) ~ ~j—\ Ensemble
Xk F(xk—l'uk) + X = (xk > mean

5l — al— ~ . e
Zy = G(xk ) Z, = (Zk)
Linear Kalman Filter .
koo e | Kalman Gain

K, = <(5€\'k_ — %) (2, - 2R)T> <(2§( - 2,.)(2), - 2R)T + R>_1

Ensemble Analysis

Xk =X + Ki(zi — 2) + vp) Xe = (%) Pp??




1. Hydrol. Hydromech., 67, 2019, 1, 4-19
DOL: 10.2478/johh-2018-0013

EnKF Assimilation of
S EVI R I - LST & g ro u n d d a ta :IZEZET;;?:E(; scheme for snow multivariable data assimilation

Gaia Piazzi'", Lorenzo Campo', Simone Gabellani', Fabio Castelli®, Edoardo Cremonese’,
Umberto Morra di Cella®, Hervé Stevenin®, Sara Maria Ratto®

(]
fo r S I I OW a C k d I l a I I | I C S " CIMA Research Foundation, via Armando Magliotto, 2 - 17100 Savona, Italy.
? Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta, 350139 Florence, Italy.

* Environmental Protection Agency of Aosta Valley, Loc. Grande Charriére, 44 11020 Saint-Christophe, Aosta, Italy.

f Regional Center of Civil Protection, Aosta Valley Region. via Promis, 2/A - 11100 Aosta, Italy.
Corresponding author. Tel.: +39 019230271, Fax: +39 01923027240. E-mail: gaia.piazzi{@cimafoundation.org

Energy fluxes 2 snow layer Mass fluxes
and 2 soil layer - )
Shortwave and longwave I fs-rublun:aflon TO rg n O n ) Va I d AO Sta )
radiation fluxes om =

snow layer

%‘:‘ X . Ts melting flux from 2160 m a.s.l.
N:-p; Mass q snow layer “s”
=

3

EGlc)

A Ak
ol Tm l transfer
between s melting flux from

S 1 | “ w
= W and 'm “ m
' m-pm snow layer “m

=0 H=—{ ", Assimilated data
| B T Different combinations of:
X
HORXKAK

* MSG-SEVIRI LST, or

z, Ty .
. e Ground Station LST
Ts="s snow layer surface temperature Ws = “s” snow layer water equivalent
Tm="m" snow layer surface temperature Wm = “m" snow layer water equivalent
To = soil surface temperature ps ="“s" snow layer density [ ) S n OW d e pt h
Td = soil interface surface temperature pm =“m" snow layer density

Ty = deep temperature
e Albedo



SURFACE TEMPERATURE
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snow depth [m]

In practice:

Get reliable
innovations from
ground (very sparse)
observations, use
satellite LST to spatially
interpolate them



Strengths and weaknesses in Kalman-based algorithms (LKF, EKF,
UKF, EnKF ...) come from the same key assumption:

Second-order (mean & covariance) approximation to probability
distributions.

These two distributions have
exactly the same mean an variance

Hypothesis of Gaussian distribution is not really the issue:
it is needed to prove ‘optimality’, but it works for LKF only anyway!



SMAP L4 Global 3-hourly 9 km Surface
and Rootzone Soil Moisture, Version 4
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Propagating and analyzing (.. an

approximation of ...) the entire , ,
proabability distribution / Particle Filter

Sequential Monte Carlo

Pros:

e Can accomodate non-linearity and non-Gaussianity

e Explicitimplementation of the Recursive Bayesian State
Estimation

e Very simple to code

Cons:

e Computationally expensive, especially for large dimensions
e Case-specific, euristic sampling techniques

e Risk of degeneracy of samples



Recursive Bayesian Estimation basics

Kalman Filter

X, = Axk_1 + Buk + Wi_1

Z, = ka +vk

~— ~+
X, = Ax;_, + Bu,

P, = AP{_ AT +Q

P} = (I - K H)P;

Probabilistic interpretation of model and observations

X = F(p—q, U, We—q) == p(xpc|2p—1)
z, = G(xy,vy) == p(zic|x)

Forecast step (Chapman-Kolmogorov eq.)

p(xilzics) = | il )p (e |22 dxis
Analysis step (Bayes rule)

p(xk|zk) X p(zk|xk)p(xk|zk—1)



Particle Filter

Sequential Importance Sampling

Likelyhood of data (includes
measurement noise)

Model noise is
introduced here!

-
~
/

PRa

The analysis step attributes weights qi (likelyhoods,
summing to 1) tothei = 1, ..., M particles, which
are used to compute the posterior pdf

The problem of degeneracy: the likelihood of Kish's Effective Sample Size
most particles becomes close to zero after a few Mesr = 1/ Mo 2
iterations. Need to re-sample! Li=11



Various resampling algorithms in the literature, variants of
a similar basic concept

CDF babilit . ~J+
/ probability Select M new particles X7
(o [ ____ . P
4 from the previus X,
N particles such that
P .+ /\.— ]
Q¥ peemm — P[x] = x;( ] = q'
QW} ........................... r k
Q® @T-'-?-'-?-'-?-'-?-'-?-'-T-'- ???? . This is done repeating M
I .
O | times these two steps:
8{3} .:::::::::::T:l.—_-'FJ,qtzu.qBJ
o W, @ ) 1. Generate a random
Q +«——q +q l )
" ! number r sampling
(1) _——- —
Q I ’ i I from U[0,1].
Qu=0 I l . . I 1 1 2. Assign the value X, to
1 2 3 4 5 6 8 9 10 ~J+ .
particle number xk aCCOfdlng to
i i—1 i
. <r<
‘-3, Irersa




Advances in Water Resources
Volume 94, August 2016, Pages 364-378

.'-_,"_‘_ % &‘.;‘l Ii 0

ELSEVIER

Combined assimilation of streamflow and satellite soil moisture
with the particle filter and geostatistical modeling

Hongxiang Yan A & Hamid Moradkhani &

Remote Sensing of Environment
Volume 200, October 2017, Pages 295-310

ELSEVIER

Correcting satellite-based precipitation products through SMOS
soil moisture data assimilation in two land-surface models of
different complexity: APl and SURFEX

Carlos Roman-Cascon 2 & & Thierry Pellarin 2, Francois Gibon 2, Luca Brocca ¢, Emmanuel Cosme 2, Wade Crow
d Diego Fernandez-Prieto &, Yann H. Kerr ©, Christian Massari ©



What about

parameter
Model (and its ‘non- Model inversion . ]
observable’ parameters) estimation?

States
Observation

State estimation
Data

Bayesian estimation

Improved
State estimation




Filter augmentation

Parameter

State estimation . .
estimation

Bayesian estimation

States
Observation
Data

Improved
State estimation




Variational methods
for Model Inversion

Model (and its ‘non-

observable’ parameters)

States

State estimation Observation
Data

Improved
State estimation




Multivariate 1D-Var

Multidimensional (e.g. 4D) Var is mostly used in meteorology and oceanography)

State estimation as a time-continuous initial value problem

dx
—=Fx0,u)+wte(tt) x(to) = xo

z=G(x)+v

0 is the ‘non-observable’ parameters set

Global penalty function with adjoined model constraint
through Lagrange multipliers

Assimilate a number of observations z;, = z(t), ti, € (to,t1),
k =1,...,N through the minimization of:

J(x,0,4|z,) = (6 —8)ry(6 —8) + z(G(x) — 2T, (G(x) — z)" A
k

Meaning of the
three terms?

d .
+ft21/1[d—:— F(x, H,u)] dt + i.c.



Global minimization by setting independent variates to zero

aj; _
/ax_o
6/ _
8J(x,0,4]z,) =0 =) 0
/92 ="0
d0A
dx
Forward Model T F(x,0,u)
Backward @4 oF
—=—A——T,(G(x) —z,)5(t — ¢
Adjoint Model dt 0x 2(G(x) — ;)8 (t — ty)

{1

_ JOF
Parameters Update 6 =0 +TI';" Ao dt
Lo

lterate untilA — 0




Soil moisture controls the partinioning of available
surface energy (Net Radiation minus Ground Heat
Flux) among Turbulent Latent (evapotranspiration)

VAN

Hour of day

and Sensible Heat Flux

LST _/////,—\\\\\\\-
Hour of day '
A R
<1zOVZ|> n

H

SENSIBLE
HEAT

LATENT

WET SOIL

Caparrini et al., 2003, BLM, 107, 605-633
Bateni et al., 2013, WRR, 49, 950-968

LST

LE

LATENT
HEAT

DRY SOIL

v

H

SENSIBLE
HEAT
FLUX



Basin-average rainfall
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Variational assimilation approach

Forward model

Evapo-
traspirazione
7 P
Calore |
3 \ \
- Y
Frotume superticiate

8 ] suolo aprevalente
Vegetazione
| Lcomportamento

Suolo a prevalente gravitazionale
comportamento 1
ceptlare Acquifero
Deflusso
superficiale

Percolazione

Deflusso
ipodermico

Deflusso
di base

4

Precipitation

Runoff-formation
(Soil Moisture state)

Flood wave dynamics

(River hydraulics)

Streamflow

Adjoint sub-models
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Variational assimilation of LS
surface water-energy balance

L 4 ET, - boundary
WP -nl h -'-'.
o ET,
Schematic Diagram of Riw v R,.R, :
E : >
Mass & Energy Balance . R,  Re.down
. » — b imimi i >

bl
i

1
‘ T = constant




Reduction to a system of coupled ODE’s (1D-VAR in time)

Precip @ dT
System S
e s —S = Fy (T Ta H(Ts, ), LE(T, We, ), )
Schematic Diagram of  «, v BB, "
Mass & Energy Balance _ I o e Observed & analyzed
| dT, &
Q7. U L P B A e, . = FZ (Tg; Td; ) ~N
Q- RERmEen & 3
e L b ; &
b4 om TR v | dy W,
o c _
.5T=constant ( Q’(m 2% dt - F3 (M/CI %I LE(TS) M/C) e )) e )
Castillo et al., 2015, WRR, in press Analyzed
: " obs)? bg\?
Cost function J=| Kps(Ts—TE) dt + Ky (W, —WS9) | +
to tO

2 2 2
Kroo(Ts = T0%)"| + Kra(Ta = T3%)|+ [ Kurg (Wy — W) dt +
0

to
ty dT dT, dw,
(Y ) (T 1) () 1, [ )
fto ( 1 dt 1 2 dt 2 3 dt 3 4 dt 4
Weakly coupled

(soil moisture above
field capacity)
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Assimilation of LST up to sept. 13th ©

I
09/03 09/10 0917 09/24

Soil saturation (%) (last day of assimil.)

Background

Analysis increment
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m3/s

Predictions at stremaflow stations,

different initial soil moisture
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Peak
discharge

[m3/s]

Predictions at stremaflow stations,

different initial soil moisture conditions

4

107 ‘
X% Data
® 50% field capacity
@ LSTAssim i
o
103; ---------------------------------------------------------------- e X & .
| o x ©
¢ *
e © *o B
o, %
2 e ©
10 o x B ;
i o) ]
20 o0
. Bx
e
o' Ox | )
10 10' 10° 10
Precipitation

volume[108m3]



‘Near-flooding’ event of february 2014

Qo ~ 2200 M3/s Q. ~ 2600 M3/s

— e s ——
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Assimilation of streamflow
data for the analysis of
hillslope runoff and river
flow

One key simplification with respect to
other ‘fluid flow’ problems:

Knowing the drainage structure, the
problem may be again reduced to a
system of coupled ODEs

Cost function

/= Z {ft:l [KQ,h((Qh - Qh0b5)2> + Kqin ((CIL,h - qL,hbg)2> + K. n ((ch — chb9)2>] dt + Ko, n ((Qo,h — Qo’hbg)2>}

h=i,) k

t dQj d aQ;
+. % (d—tj — F(Qj, quj» - )) + Ak (% — F (Qk, quies -~ )>+ A (—Q — Fi(Q1, Qj, Qi i - ))

dt



.
4 ._.‘.‘_'
S JFlorence

Dealing with sparse observations
along the river network

X

a ds

K(%%) = exp| ——57" f e
X

Dendritic Assimilation Kernel
multiplying the error covariance

Assimilation of streamflow

data for the analysis of
hillslope runoff and river
flow

10° Kernel Capannoli
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] Strongly non-gaussian
Sample PDF likelyhood and
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S. Giovanni alla Vena valle
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Analysis of hillslope runoff at time of raising limb




100 >

Analysis of streamflow at time of rainfall start
Analysis increment (% of background)



Prediction (m3/s)
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Prediction of flow peak time
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Water Resources Research

RESEARCH ARTICLE Variational assimilation of streamflow data in distributed flood
10.1002/2016WR019208 forecasting

Key Points: Giulia Ercolani ‘27" and Fabio Castelli?
« Variational assimilation of streamflow

Difficult to adjoin, but at least mass conservation
and rainfall distribution need to be maintained

g o P;O
“Analysis increment of river flows throught the

network

-

e Data of river flow at multiple locations



Assimilation scheme

Montecarlo sampling of
Antecedent Soil Moisture,
rainfall interpolation

Analysis increment of hillslope
runoff

Likelihood

Analysis increment of river
flows

Variational assimilation with
e an adjoint

‘\\JUJ Hydrometric data



Hillslope runoff analysis
increment (mm)

Exp1: assimilating all the synthetic
stations

Exp2: assimilating along the mainstream,
included basin outlet.

Exp3: assimilating close to main tributaries
outlet

Exp4: assimilating close to main tributaries
outlet & basin outlet.

RAINFALL (mm) |



Ingredients
Technique
Tricks

... make you own recipe!



Selected Papers from Workshop
on

CLIMATE CHANGE
AND HYDROGEOLOGICAL HAZARDS
IN THE MEDITERRANEAN AREA

Colombella, Perugia, lialy June 27th-28th, 1994

Co-Conveners
Lucio Ubertini Fahio Castelli Ralael L. Bras

Ohpanized by
Hydraulic Institute, University of Perogia
Water Resources Hesearch and Documentation Center, University Tor Foreigners, Perogia

With the sponsorship of
National Research Couneil of Italy

Under the auspices of
Group for Prevention from Hydrogeological Disasters - National Research Council of Italy
Depariment of Civil and Environmental Engineering - Massachusetts Institote of Technology
Center for GGlobal Chance Science - Massachusetis Instituie of Technology




	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Número de diapositiva 54
	Número de diapositiva 55
	Número de diapositiva 56
	Número de diapositiva 57
	Número de diapositiva 58
	Assimilation scheme
	Hillslope runoff analysis increment (mm)
	Número de diapositiva 61
	Número de diapositiva 62

