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Pluvial, fluvial or coastal flooding in 
urban areas?
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l Fluvial flooding: Levee breach in Denver County (2016)



Pluvial, fluvial or coastal flooding in 
urban areas?
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l Coastal flooding: Hurricane Sandy, USA (2012)



Pluvial, fluvial or coastal flooding in 
urban areas?
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l Pluvial Flooding: Manchester (UK), 2018



We use models to transform data 
to information and information to 

wisdom (to take decisions)
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Few statements

(and because we do not believe to have enough 
evidences to guide decisions – remember the inductivist
turkey)



All models are wrong but some 
are useful

(and some are more useful than others)

(All data are useful, but some are more 
uncertain than others)
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Few statements



Common components of a pluvial 
flooding model

l Rainfall – runoff

l Hydraulic propagation

l (Damage assessment)
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A short evolution of urban flooding 
propagation models
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l Simple surcharge sewer model (’80)



A short evolution of urban flooding 
propagation models
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l 1D – 1D channel model (’90 - 2000)



A short evolution of urban flooding 
propagation models
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l 1D sewer model – 2D overland model (2000 - )



Questions we ask about models 
(in general)

l Is the model valid?
l Are the assumptions 

reasonable?
l Are data requirements 

acceptable?

l Is the model credible?
l Do the model predictions 

match the observed 
data?

l How uncertain are the 
results?

What is a good model?
Simple, realistic, data efficient, useful, reliable, valid etc
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Question we ask about urban flood 
models 

l Is the model able to 
represent the complex 
geometry of the system?

l Is the model resource 
intensive?

l Are relevant processes 
neglected?

l Is the model able to 
evaluate surcharge?

l Are irrelevant processes 
simulated?

l Is it able to go real time?
l Are available data 

sufficient?

What is the goal of modeller?
Not too complex to be inapplicable, not too simple to be 
unreliable
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My personal perspective to urban 
flooding uncertainty sources
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l Temporal and spatial variability of rainfall



My personal perspective to urban 
flooding uncertainty sources
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l Dry or wet initial conditions



My personal perspective to urban 
flooding uncertainty sources

Università di Enna «Kore»
Centro di ricerca La.R.A.

l Inlet clogging



My personal perspective to urban 
flooding uncertainty sources
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l Sewer clogging



My personal perspective to urban 
flooding uncertainty sources
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l Goods and furniture potentially exposed to flooding



Families of uncertainty sources

l Uncertainty in model 
quantities/parameters/
inputs

l Uncertainty about model 
form

l Uncertainty about model 
completeness

l Lack of observations 
contribute to

– uncertainties in input data
– parameter uncertainties

l Conflicting evidence 
contributes to

– uncertainty about model 
form

– Uncertainty about validity 
of assumptions

Making it difficult to judge how good a model is!!
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Tools to cope with uncertainties

l Data assimilation is a mathematical discipline that 
seeks to optimally combine theory (usually in the 
form of a numerical model) with observations.

l Sensitivity Analysis studies how much each individual 
source of uncertainty contributes to the output 
variance 

l Uncertainty Analysis focuses on how uncertainty in 
the input factors propagates through the structure of 
the model and affects the values of the output
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To understand SA and UA:
backward reasoning

Most people, if you describe a train of events to 
them will tell you what the result will be. There 
will be few people however, that if you told them 
a result, would be able to evolve from their own 
consciousness what the steps were that led to 
that result. This is what I mean when I talk about 
reasoning backward.
— Sherlock Holmes, A Study in Scarlet, Sir 
Arthur Conan Doyle (1887)



Modellers conduct SA to determine

(a) if a model resembles the system or processes under study,

(b) the factors that mostly contribute to the output variability,

(c) the model parameters (or parts of the model itself) that are
insignificant,

(d) if there is some region in the space of input factors for which
the model variation is maximum,

(e) if and which (group of) factors interact with each other.

Università di Enna «Kore»
Centro di ricerca La.R.A.



SA flow chart (Saltelli, Chan and Scott, 
2000)
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Design of the SA experiment

l Simple factorial designs (one at a time)

l Factorial designs (including potential 
interaction terms)

l Fractional factorial designs
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SA techniques

l Screening techniques
– O(ne) A(t) T(ime), factorial, fractional factorial 

designs used to isolate a set of important factors
l Local/differential analysis
l Sampling-based (Monte Carlo) methods
l Variance based methods

– variance decomposition of output to compute 
sensitivity indices
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Screening

l screening experiments can be used to 
identify the parameter subset that controls 
most of the output variability with low 
computational effort. 
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Screening methods

l Vary one factor at a time (NOT particularly 
recommended)

l Morris OAT design (global)
– Estimate the main effect of a factor by computing a 

number r of local measures at different points 
x1,…,xr in the input space and then average them.

– Order the input factors
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Local SA

l Local SA concentrates on the local impact of the 
factors on the model. Local SA is usually carried out by 
computing partial derivatives of the output functions 
with respect to the input variables. 

l The input parameters are varied in a small interval 
around a nominal value. The interval is usually the 
same for all of the variables and is not related to the 
degree of knowledge of the variables. 
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Global SA

l Global SA apportions the output uncertainty to 
the uncertainty in the input factors, covering 
their entire range space. 

l A global method evaluates the effect of xj while 
all other xi,i¹j are varied as well. 
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On the other hand - Uncertainty 
analysis

l Parameter uncertainty
– usually quantified in form of a distribution.

l Model structural uncertainty
– more than one model may be fit, expressed as a 

prior on model structure.
l Scenario uncertainty

– uncertainty on future conditions.
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Tools for handling uncertainty

l Parameter uncertainty
– Probability distributions and Sensitivity analysis

l Structural uncertainty
– Bayesian framework
– one possibility to define a discrete set of models, 

other possibility to use a Gaussian process
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Sources of uncertainty

l Errors in the input and boundary condition data
l Errors in the model structure
l Errors in estimates of parameter values
l Commensurability of modelled and observed 

variables and parameters 
l Errors in the observations used to calibrate or 

evaluate models
l Errors of omission (not always the unknown 

unknowns)
Difficult (impossible) to disentangle different sources of error 
without making strong assumptions (Beven, 2005)
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Types of Uncertainty
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Aleatory Uncertainty

Epistemic Uncertainty
System Dynamics

Forcing and Response Data

Disinformation

Semantic/Linguistic Uncertainty

Ontological UncertaintyB
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Uncertainty with stationary statistical characteristics.  
May be structured (bias, autocorrelation, long term 
persistence) but can be reduced to residual stationary 
random component 

Important because:
Full power of statistical theory can be used to estimate 
the probability of matching a new sample or 
observation conditional on the model

Aleatory Uncertainty
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Epistemic uncertainty arising from a lack of knowledge about 
how to represent the catchment system in terms of both model 
structure and parameters. This may include things that are 
included in the perceptual model of the catchment processes but 
which are not included in the model.   They may also include 
things that have not yet been perceived as being important but 
which might result in reduced model performance. 

Important because:
May result in non-stationarity in residual characteristics that if it 
cannot be represented explicitly might lead to overconfidence in 
inference

Epistemic Uncertainty (System 
Dynamics)
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Epistemic Uncertainty arising from lack of knowledge about the 
forcing data or the response data with which model outputs can 
be evaluated.   This may be because of commensurability or 
interpolation issues when not enough information is provided by 
the observational techniques to adequately describe variables 
required in the modelling process. 

Important because:
May result in non-stationarity in residual characteristics that if it 
cannot be represented explicitly might lead to overconfidence in 
inference

Epistemic Uncertainty (Forcing and 
Response Date)
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Analogous to known unknowns (in either system representation 
or forcing data that are known to be inconsistent or wrong.   
Will have the expectation of introducing disinformation into the 
modelling processes resulting in biased or incorrect inference 
(including false positives and false negatives in testing models as 
hypotheses) 

Important because:
May feed disinformation into the model identification process

Epistemic Uncertainty
(Disinformation)
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Disinformation in calibration data
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Disinformation in calibration data
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Uncertainty about what statements or quantities in the relevant 
domain actually mean (there are many examples in hydrology 
including storm runoff, baseflow, hydraulic conductivity, 
stationarity etc).   This can partly result from commensurability 
issues that quantities with the same name have different 
meanings in different contexts or scales. 

Important because:
May limit effective information content in inference if compare 
variables that do not have the same meaning

Semantic/Linguistic Uncertainty
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Uncertainty associated with different belief systems.  Relevant 
example here might be beliefs about whether formal 
probability is an appropriate framework for the representation 
of mode errors. Different beliefs about the appropriate 
assumptions could lead to very different uncertainty estimates. 

Important because:
All the previous definitions may be subject to ontological 
uncertainty.

Ontological Uncertainty
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• Errors in the input and boundary condition data (A/E/D)

• Errors in the model structure (E/D?)

• Errors in estimates of parameter values (A/E)

• Commensurability of modelled and observed variables and 

parameters (A/E/D)

• Errors in the observations used to calibrate or evaluate models 

(A/E/D)

• Errors of omission (sometimes known omissions) (E/D?)

• The unknown unknowns (D?, becoming E/D)

Types of error and why they are important
Aleatory (A), Epistemic (E) or Disinformative (D) 
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• Many sources of uncertainty in the modelling process but 
can generally only evaluate the differences (residuals) 
between some observed and predicted variables (e.g. water 
levels, discharges, ……)

• Leaves lots of scope for different interpretations and 
assumptions about the nature of different sources of 
uncertainty

• Model structural error particularly difficult to assess (not 
easily separated from input and other uncertainties without 
making strong and difficult to justify assumptions) – often 
assessed AS IF model is correct

• Therefore lots of uncertainty estimation methods

Uncertainty about
uncertainty estimation
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• Treat the optimal model as if it were the �true� model

• Fit a model to the residuals using appropriate assumptions (e.g. 
residuals are of zero mean and constant variance and uncorrelated 
in time/space - or something more realistic, with bias, non-constant 
variance {heteroscedasticity}, and correlated residuals)

• Nature of error model defines a likelihood function

• Sum of model + error distribution can be used to estimate likelihood 
(probability) of predicting an observation given the model

• Problem that treating multiple sources of error as if all 
�measurement error�

Statistical Uncertainty Estimation
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Many reasons why error structures might be complex

• Inconsistent observations

• Effects of processing input error through model structural 
error in time and space (might lead to non-stationary 
correlation…)

• Incommensurable observed and predicted variables

• Sample from long term stationary stochastic behaviour

• ….

But what if residual series 
shows complex (non-
stationary?) structure? 
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Allowing that epistemic uncertainties may not be represented 

as simple statistical functions 

• Informal likelihoods (no longer P(O|M) but can be used to 

estimate P(M|O))

• Fuzzy methods

• Dempster-Shafer Evidence Theory

• ….

May be inefficient and qualitative – HANDLE WITH CARE!!!

Alternative Frameworks
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Basic requirements of a likelihood as belief

• Should be higher for models that are �better�

• Should be zero for models that do not give useful 
results

• Scaling as relative belief in a hypothesis rather than 
probability

But how then best to determine weights from evidence 
given epistemic uncertainties??

Uncertainty as a likelihood surface 
in the model space
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1.  Eliminate obviously disinformative data

2. Set up limits of acceptability (reflecting 
observation error, commensurability error and input 
error) prior to running the model.

3. For each model run, evaluate performance against 
limits of acceptability

4.  Check for error reconstruction to improve 
predictions / calculate distributions of errors.

A general framework for model 
evaluation
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First criterion: Event mass balance consistency (expectation that event
runoff coefficient Q / R will be less than one)

But…difficulty of separating events

and impact of an inconsistent event on model results might persist for 
following events, gradually decaying

Master Recession Curve

Separation of Events

Identifying
disinformative data
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Results of runoff coefficient determination for River Tyne at Station 23006 –
plotted against rainfall totals over catchment area as estimated from 5
gauges (black – range 0.3 to 0.9)

Master Recession Curve

Beven et al, HESS, 2011

Setting Limits of 
Acceptability prior to 
running a model
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• The question that then arises within this framework is whether, for an
particular realisation of the inputs and boundary conditions, εM(θ, I, εI,
x, t) is acceptable in relation to the terms εO(x,t) + εC(Δx,Δt, x,t). This is
equivalent to asking if the following inequality holds:

Omin(x,t) < M(θ, I, εI, x, t) < Omax(x,t) for all O(x,t)

where Omin(x,t) and Omax(x,t) are acceptable limits for the prediction 
of the output variables given εO(x,t) and εC(Δx,Δt, x,t)

• Idseally, limits of acceptability should be evaluated prior to running 
the model (but note I,εI in M(θ, I, εI, x, t) )

Limits of acceptability
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Likelihood can be developed based on scaled deviation away from
observation, with zero value at any time step that prediction lies outside
limits.

Model Evaluation using 
Limits of Acceptability
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Our “sand-box” case: Palermo (IT)

l Example 1 (Distributed Input Uncertainty -
Rainfall) 
l Aleatory: random metering error
l Epistemic: not considering a raingauge
l Disinformative: shifting series in time

l Example 2 (Lumped Parameter uncertainty)
l Aleatory: variability due to random factors 

(accidental events, initial conditions)
l Epistemic: not directly measurable
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Our “sand-box” case study: 
Palermo city centre (Italy)
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The available database: 
rainfall and flooding data

Flooded 
areas

Mean flooding 
depth [cm]

Average return 
period [yrs]

Flooded 
areas

Mean flooding 
depth [cm]

Average return 
period [yrs]

1 144,9 0,54 9 44,4 0,56
2 63,4 0,56 10 25,7 0,71
3 50,7 0,68 11 28,7 0,56
4 45,9 0,56 12 54,6 0,54
5 59,9 0,56 13 43,2 0,54
6 32,2 0,56 14 38,4 0,56
7 28,3 0,68 15 24,6 1,5
8 47,0 0,59

Rainfall data were collected in 7 rain gauges located inside and outside the
analysed area for all the events with a temporal resolution of 1-5 minutes.

Flooding data were collected by the Fire Brigades via remote cameras and
field reports (more than 700 reports on damaged properties).
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Our “sand-box” case: Palermo (IT)

l Example 3 (Damage model structure) 
l Epistemic: some damage processes are not 

considered or investigated
l Disinformative: some initial assumptions may be 

false
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Tools: Flooding 2D – 1D 
mathematical model 

(SWMM+FLO-2D)
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Urban flood damage 
appraisal

l The expected flood damage can be evaluated by 
an ex-ante analysis.

l Real damage data are interpolated by means of 
damage functions describing the relationship 
occurring between the hydraulic characteristics of 
flood and the related damage

DAMAGE 
FUNCTIONS 
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Uncertainty  inherent to
flood damage function

l Several regression laws with different level of simplification can be used 
as depth-damage functions thus influencing the damage appraisal 
obtained.

l Flooding data are often piecemeal, affected by measuring errors and 
spatially aggregated. In consequence, the flood damage assessment is 
usually affected by a degree of intrinsic uncertainty that cannot be 
realistically eliminated 
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Step 1 - Rainfall temporal resampling

70

12 historical rainfall time series recorded between 1993-1997
with high temporal resolution (1-3 min) by a network of 8
raingauges in the analyzed area was adopted

According to the mass balance principle, for each time step,
the real event and the re-sampled one are characterised by
the same rainfall volume.

For each historical rainfall event, the duration was divided into n equal
time intervals ranging from 5 to 15 min with step of 1 min and for each of
these temporal windows the average intensity was evaluated.

For each historical rainfall event 11 hyetographs with a coarser temporal
resolution were obtained
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STEP 2 - Rainfall spatial resampling

71

Rainfall data from some of the raingauges present in the
watershed were neglected to analyse the influence of the
spatial rainfall aggregation on the efficiency of rainfall-runoff
model predictions

• The number of sampled raingauges was selected between 1 and 8 and
all possible combinations of raingauges were evaluated.

• For each combination, urban sub-catchments were linked to the closer
raingauge according to the minimum Euclidean distance criterion.

The total number of raingauge combinations was 255

The analysed spatial and temporal resolution scenarios
were in total 2805 (255x11).
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STEP 3 – Evaluation of rainfall performance 
indicators

72

To quantify the goodness of rainfall estimates with respect to the reference

rainfalls adopting the whole raingauge network (8 RG)

To evaluate the dependencies between model performance and accuracy in

the description of a rainfall event in time and space

BALANCE and GORE indices  (Andréiassian et al., 2001) were computed:

BALANCE quantifies the overestimation (when >1) or underestimation (when

<1) of the rainfall volume in each analysed scenario.

GORE compares the sum of squared errors in the rainfall estimate in each

scenario to the temporal variance of the reference precipitation (obtained

with the maximum temporal resolution and the whole raingauge network ).

Distributed Input UncertaintyUniversità di Enna «Kore»
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STEP 4 – Modelling efficiency evaluation

73

Modelling results obtained with historical rainfall
events were compared with those achieved using

coarser estimate rainfall data

The uncertainty inherent in flood modelling results

was assessed in terms of the Nash and Sutcliff
criterion (N-S) adopted as likelihood measure within

the GLUE analysis

1 −
#$ %
#$ &
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Methodology application to a case study

74

At first,

the mathematical model was calibrated for all 2805 considered scenarios
by defining 500 random Monte Carlo sets of parameters (rainfall – runoff
parameters and drainage system roughness) and then selecting the one
providing the highest N-S criterion computed on flooding depths.

Then,

the rainfall performance indicators were evaluated and compared with
model efficiency in the flood depths appraisal;

the model uncertainty was correlated to the availability of rainfall data
considering the impact of different possible combinations of a fixed
number of raingauges
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BALANCE and GORE indices vs model efficiency N-S

75

Comparison of rainfall indices and N-S criterion computed on the flooding
depths obtained in each of the 15 flooding locations of the watershed by
the simulations carried out for each of the 2805 considered scenario

BALANCE is higher sentitive: rainfall depth has a major impact on
flooding; a wrong estimation of rainfall can impact negatively on model
performance

The ratio between GORE and N-S is nearly linear: the model, during
calibration phase, is able to slightly compensate the wrong estimation of
rainfall input obtaining a reliable estimation of the flooding depth.

event of 1st December 1995 
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BALANCE and GORE indices vs model efficiency N-S separating
the upstream and downstream flooding areas

76

event of 1st December 1995

upstream 
flood 
locations

downstrea
m flood 
locations

N-S is more influenced by BALANCE when considering the downstream
locations and influence is lower in the upstream ones: downstream flooding
locations are more influenced by rainfall volume and a wrong estimation
of such variable is rapidly reflected in flooding estimation

The estimation of downstream flooding are less influenced by GORE 
confirming that the model calibration partially compensate the imperfect
rainfall knowledge

Better rainfall knowledge generally means a better estimation of flood 
depth but the uncertainty related to rainfall knowledge is still high: GORE 
values equal to 0.8 can produce N-S flooding estimation criterion ranging 
from 0.5 to 0.75
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Uncertainty affecting flood damage estimates 

77

A GLUE analysis was carried out by running 500 Monte Carlo Simulations
changing model parameters for each of the 2805 considered scenarios

To estimate total monetary flood damage depth-damage curves for
buildings and vehicles obtained by available data in the area were
used

8409.0h85.867D ×= 5110.0h70.1035D ×=

Uncertainty bands (5th and
95th percentiles) around the
measured and calibrated
flood damage in the entire
catchment during the event of
the 1st December 1995.

• The model is generally able for providing a good estimate of the measured
damage.
• Total monetary damage appraisal is in the range of �10% around the

measured value.
• The calibration efficiency is progressively better if more rainfall data are

available but the added value of the single raingauge after the forth is not
relevant.
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The application of the Bayesian 
analysis

• The dataset was divided in three parts in order to test the ability of
Bayesian uncertainty analysis to learn from available data

• The first Bayesian update starts from uniform parameter distributions
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79

The results of the first 
Bayesian update
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The results of the first 
Bayesian update
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The results of the first 
Bayesian update
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The results of the first 
Bayesian update

Total flood damage with power damage law
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The results of the second 
Bayesian update
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The results of the second 
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The results of the second 
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The results of the second 
Bayesian update

Total flood damage with power damage law
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The results of the third 
Bayesian update

Total flood damage with power damage law
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Bayesian Model Averaging (BMA)
Bayesian Model-Averaging technique looks to 
overcome the limitations of a single model by 
linearly combining a number of competing models 
into a single new model forecast
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M = set of models considered and      
D= quantity to predict

posterior distribution
of D given data D

posterior distribution under Mk
posterior model probability (weight)

All probabilities implicitly conditional onM

( )1,..., KM M

( ) ( ) ( )
1

,
K

k k
k

p p M p M
=

D = DåD D D

( ),kp MD D

( )kp M D

BMA infers the posterior distribution of forecasting variables by weighing
individual posterior distributions based on their probabilistic likelihood
measures, with the better performing predictions receiving higher weights
than the worse predictions.
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Because BMA provides a probabilistic form of synthesis results 
among several models, the mean value of distribution can be 
used as the result of multi-model forecasting. 

BMA prediction (posterior mean) of D:

The expected BMA prediction is the average of individual 
model predictions weighted by the likelihood wk that the 
individual model Mk is the optimal model on the condition of 
the given data D 

( )
1

,
K

k k
k

E E M p M
=

D = Dé ùé ùë û ë ûåD D D
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BMA predictive uncertainty (posterior variance):

( )
1

withi

,

n-model variance

K

k k
k

Var Var M p M
=

D = Dé ùé ùë û ë ûåD D D
!"""""#"""""$

( ) ( )2

1

between-model varia c

,

n e

K

k k
k
E M E p M

=

+ D - Dé ù é ùë ûë ûå D D D
!"""""""#"""""""$

It represents an important uncertainty measure that better describes the
predictive uncertainty than in a non-BMA scheme where uncertainty is
estimated based only on the variance between-models and consequently
results in under-dispersive predictions

Reflecting data 
variability

Reflecting model 
consistency
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Equivalent damage models
BMA prediction and the related uncertainty was 

compared to the predictions of 4 different 

formulations of damage curve functions:
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• exponential (EXP)
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BMA methodology requires the estimation  of BMA weights and 
variance

Each model was treated by Bayesian uncertainty analysis: 

BMA weights and variance results by the application of the 
Expectation-Maximization (EM) algorithm to a log-likelihood 
function
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During the analysis, the effect of the available data growth 
was taken also into account on the model uncertainty by 
seven updating of the analysed database  (adding 4 events at 
time)

According to a Bayesian updating approach the model 
weights, wk, resulted as a weighted average of its current 
forecast performance weighted by the conditional 
probabilities of the previous step. 
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Starting from equal weights for 
all models, the weight increases
for the better performing model 
and decreases for worse models

Model weight linked to Power
function shows always the best 
performances
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Model structure disinformation

RMSEBMA better describes the predictive uncertainty
than in a non-BMA scheme where uncertainty is
estimated based only on the variance between-
models
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Comparison between PBIAS and RSME statistics of the expected 
BMA predictions, along with that of the Simple Model Average 
(SMA) 

BMA predictions are better than that of the SMA and of best 
individual predictions in terms of RSME
BMA PBIAS and RMSE are less than SMA ones
The improvement in terms of uncertainty reduction by BMA is 
around 10% with respect to the best individual model 
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A paradox to think about in your 
own work…

l Generally, the more physical understanding that is built into 
a model, the more parameter values must be specified to 
run the model

l The more parameter values that cannot be estimated 
precisely, the more degrees of freedom that will be available 
in fitting the observations (we cannot measure effective 
parameters everywhere).

l Therefore the more physical understanding that is built into 
a model, the greater the uncertainty is likely to be.

l A �perfect� model with unknown parameters is no 
protection against equifinality
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• Maybe it is impossible to separate 
out sources of error from series of 
model residuals 

• Epistemic sources of uncertainty result 
in non-stationarity in error 
characteristics; 

• Treating all uncertainties as aleatory 
can lead to dramatic over-
conditioning 

• Non formal approaches allows for 
having a glance on the performance 
of our models without requiring 
restrictive assumptions 

• Limits of acceptability on model 
performance can help getting rid of 
bad models; 

• Discussion and agreement regarding 
assumptions of analysis provide a 
basis for communication of concepts

Summary
but probably we do not need  it in 
practice 

UA hypotheses are a card tower so 
watch out

and over-estimation of uncertainty

but produce equifinality and 
uncertainty estimation is only
qualitative

Every time your modeler heart is 
broken, a doorway cracks open to 
a world full of new beginnings, new 
opportunities

If it happens early and often, all the 
better
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