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Pluvial, fluvial or coastal flooding in
urban areas?

e Fluvial flooding: Levee breach in Denver County (2016)




Pluvial, fluvial or coastal flooding In
urban areas?

e Coastal flooding: Hurricane Sandy, USA (2012)
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Pluvial, fluvial or coastal flooding in
urban areas?

e Pluvial Flooding: Manchester (UK), 2018




Few statements

We use models to transform data

to information and information to
wisdom (to take decisions)
(and because we do not believe to have enough

evidences to guide decisions — remember the inductivist
turkey)

DUDE! T HAVE A ToN ofF
ONLINE FoLLOWERS AND
THEY ALL WANT To HAVE

ME oVER FoR DINNER!
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Few statements

All models are wrong but some
are useful

(and some are more useful than others)

(All data are useful, but some are more
uncertain than others)
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Common components of a pluvial
flooding model
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A short evolution of urban flooding
propagation models

e Simple surcharge sewer model ('80)

1 /'um pathways

. 2 Qverspill
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3 Out of catchment
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A short evolution of urban flooding
propagation models

S
e 1D — 1D channel model ("90 - 2000)

p

) -
—Water level

Sewer Pipe

Surface

Manbhole or catch pit




Universita di Enna «Kore»
Centro di ricerca La.R.A.

A short evolution of urban flooding
propagation models

e 1D sewer model — 2D overland model (2000 -
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Questions we ask about models
(in general)
«

e |s the model valid? e |s the model credible?
e Are the assumptions e Do the model predictions
reasonable? match the observed
e Are data requirements data?
acceptable? e How uncertain are the
results?

What is a good model?
Simple, realistic, data efficient, useful, reliable, valid etc
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Question we ask about urban flood

models
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My personal perspective to urban
flooding uncertainty sources

e Temporal and spatial variability of rainfall
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My personal perspective to urban
flooding uncertainty sources

e Dry or wet initial conditions
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My personal perspective to urban
flooding uncertainty sources

e Inlet clogging
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My personal perspective to urban
flooding uncertainty sources

e Sewer clogging
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My personal perspective to urban
flooding uncertainty sources

e (Goods and furniture potentially exposed to flooding
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Families of uncertainty sources
.

e Uncertainty in model e Lack of observations
quantities/parameters/ contribute to
inputs - uncertainties in input data

e Uncertainty about model — parameter uncertainties

form e Conflicting evidence
contributes to

— uncertainty about model
form

— Uncertainty about validity
of assumptions

e Uncertainty about model
completeness

Making it difficult to judge how good a model is!!
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Tools to cope with uncertainties

e Data assimilation is a mathematical discipline that
seeks to optimally combine theory (usually in the
form of a numerical model) with observations.

e Sensitivity Analysis studies how much each individual
source of uncertainty contributes to the output
variance

e Uncertainty Analysis focuses on how uncertainty in
the input factors propagates through the structure of
the model and affects the values of the output



To understand SA and UA:
backward reasoning

Most people, if you describe a train of events to
them will tell you what the result will be. There
will be few people however, that if you told them
a result, would be able to evolve from their own
consciousness what the steps were that led to
that result. This is what | mean when [ talk about
reasoning backward.

— Sherlock Holmes, A Study in Scarlet, Sir
Arthur Conan Doyle (1887)
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Modellers conduct SA to determine
o

(a) if a model resembles the system or processes under study,
(b) the factors that mostly contribute to the output variability,

(c) the model parameters (or parts of the model itself) that are
insignificant,

(d) if there is some region in the space of input factors for which
the model variation is maximum,

(e) if and which (group of) factors interact with each other.
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SA flow chart (Saitelli, Chan and Scott,
2000)

Input parameters
.
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I distribution
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Design of the SA experiment
S

e Simple factorial designs (one at a time)

e Factorial designs (including potential
interaction terms)

e Fractional factorial designs
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SA techniques

e Screening techniques

- O(ne) A(t) T(ime), factorial, fractional factorial
designs used to isolate a set of important factors

e Local/differential analysis
e Sampling-based (Monte Carlo) methods

e Variance based methods

— variance decomposition of output to compute
sensitivity indices
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Screening
S

e screening experiments can be used to
identify the parameter subset that controls
most of the output variability with low
computational effort.
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Screening methods
.

e Vary one factor at a time (NOT particularly
recommended)

e Morris OAT design (global)

- Estimate the main effect of a factor by computing a
number r of local measures at different points
X1,...,X; IN the input space and then average them.

— Order the input factors
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Local SA
o]

e Local SA concentrates on the local impact of the
factors on the model. Local SA is usually carried out by
computing partial derivatives of the output functions
with respect to the input variables.

e The input parameters are varied in a small interval
around a nominal value. The interval is usually the
same for all of the variables and is not related to the
degree of knowledge of the variables.
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Global SA

e Global SA apportions the output uncertainty to
the uncertainty in the input factors, covering
their entire range space.

e A global method evaluates the effect of x; while
all other x,,i#| are varied as well.
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On the other hand - Uncertainty
analysis
S

e Parameter uncertainty
— usually quantified in form of a distribution.

e Model structural uncertainty

- more than one model may be fit, expressed as a
prior on model structure.

e Scenario uncertainty
— uncertainty on future conditions.
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Tools for handling uncertainty
-

e Parameter uncertainty
— Probability distributions and Sensitivity analysis

e Structural uncertainty
- Bayesian framework

— one possibility to define a discrete set of models,
other possibility to use a Gaussian process
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Sources of uncertainty
S

Errors in the input and boundary condition data
Errors in the model structure
Errors in estimates of parameter values

Commensurability of modelled and observed
variables and parameters

e Errors in the observations used to calibrate or
evaluate models

e Errors of omission (not always the unknown

unknowns)

Difficult (impossible) to disentangle different sources of error
without making strong assumptions (Beven, 2005)



Facets of

Uncertainty, Hyd.Sci.J. 2014

Beven, Leonardo Lecture
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Types of Uncertainty

Aleatory Uncertainty | >

Epistemic Uncertainty
System Dynamics ' 4

Forcing and Response Data=——=

Disinformation ' >

Semantic/Linguistic Uncertainty: >

Ontological Uncertainty | >

Type of Uncertainty Description

Aleatory Uncertainty Uncertainty with stationary statistical
characteristics. May be structured (bias,
autocorrelation, long term persistence) but can be
reduced to residual stationary random component

Epistemic Uncertainty | Uncertainty arsing from a lack of knowledge about

(system dynamics)

how to represent the catchment system in terms of
both model structure and parameters. Note that
this may include things that are included in the
perceptual model of the catchment processes but
which are not included in the model. They may also
include things that have not yet been perceived as
being important but which might result in reduced
model performance.

Epistemic Uncertainty | Uncertainty arising from lack of knowledge about
(forcing and response | the forcing data or the response data with which
data) model outputs can be evaluated. This may be
because of commensurability or interpolation
issues when not enough information is provided by
the observational techniques to adequately describe
variables required in the modelling process.
Epistemic Uncertainty | Analogous to known unknowns (in either system
(disinformation) representation or forcing data that are known to be

inconsistent or wrong. Will have the expectation of
introducing disinformation into the modelling
processes resulting in biased or incorrect inference
(including false positives and false negatives in
testing models as hypotheses)

Semantic  /
Uncertainty

Linguistic

Uncertainty about what statements or quantities in
the relevant domain actually mean (there are many
examples in hydrology including storm runoff,
baseflow, hydraulic conductivity, stationarity etc).
This can partly result from commensurability issues
that quantities with the same name have different
meanings in different contexts or scales.

Ontological Uncertainty

Uncertainty associated with different belief systems.
Relevant example here might be beliefs about
whether formal probability is an appropriate
framework for the representation of mode errors.
Different beliefs about the appropriate assumptions
could lead to very different uncertainty estimates.
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Aleatory Uncertainty
S

Uncertainty with stationary statistical characteristics.
May be structured (bias, autocorrelation, long term
persistence) but can be reduced to residual stationary
random component

Important because:

Full power of statistical theory can be used to estimate
the probability of matching a new sample or
observation conditional on the model
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Epistemic Uncertainty (System
Dynamics)
..

Epistemic uncertainty arising from a lack of knowledge about
how to represent the catchment system in terms of both model
structure and parameters. This may include things that are
included in the perceptual model of the catchment processes but
which are not included in the model. They may also include
things that have not yet been perceived as being important but
which might result in reduced model performance.

Important because:

May result in non-stationarity in residual characteristics that if it
cannot be represented explicitly might lead to overconfidence in
inference
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Epistemic Uncertainty (Forcing and
Response Date)

Epistemic Uncertainty arising from lack of knowledge about the
forcing data or the response data with which model outputs can
be evaluated. This may be because of commensurability or
interpolation issues when not enough information is provided by
the observational techniques to adequately describe variables
required in the modelling process.

Important because:

May result in non-stationarity in residual characteristics that if it
cannot be represented explicitly might lead to overconfidence in
inference
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Epistemic Uncertainty
(Disinformation)

Analogous to known unknowns (in either system representation
or forcing data that are Anown to be inconsistent or wrong.

Will have the expectation of introducing disinformation into the
modelling processes resulting in biased or incorrect inference
(including false positives and false negatives in testing models as
hypotheses)

Important because:
May feed disinformation into the model identification process
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Disinformation in calibration data
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Disinformation in calibration data
]
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Semantic/Linguistic Uncertainty
S

Uncertainty about what statements or quantities in the relevant
domain actually mean (there are many examples in hydrology
including storm runoff, baseflow, hydraulic conductivity,
stationarity etc). This can partly result from commensurability
issues that quantities with the same name have different
meanings in different contexts or scales.

Important because:
May limit effective information content in inference if compare
variables that do not have the same meaning
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Ontological Uncertainty
S

Uncertainty associated with different belief systems. Relevant
example here might be beliefs about whether formal
probability is an appropriate framework for the representation
of mode errors. Different beliefs about the appropriate
assumptions could lead to very different uncertainty estimates.

Important because:
All the previous definitions may be subject to ontological
uncertainty.
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Types of error and why they are important
Aleatory (A), Epistemic (E) or Disinformative (D)

Errors in the input and boundary condition data (A/E/D)
Errors in the model structure (E/D?)
Errors in estimates of parameter values (A/E)

Commensurability of modelled and observed variables and
parameters (A/E/D)

Errors in the observations used to calibrate or evaluate models
(A/E/D)

Errors of omission (sometimes known omissions) (E/D?)

The unknown unknowns (D?, becoming E/D)
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uncertainty estimation

e Many sources of uncertainty in the modelling process but

@ «©n generally only evaluate the differences (residuals)

between some observed and predicted variables (e.g. water
levels, discharges, ......)

o Leaves lots of scope for different interpretations and
assumptions about the nature of different sources of
uncertainty

o Model structural error particularly difficult to assess (not
easily separated from input and other uncertainties without
making strong and difficult to justify assumptions) — often
assessed AS IF model is correct

e Therefore lots of uncertainty estimation methods
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Statistical Uncertainty Estimation
.

e Treat the optimal model as if it were the “true” model

e Fit a model to the residuals using appropriate assumptions (e.g.
residuals are of zero mean and constant variance and uncorrelated
in time/space - or something more realistic, with bias, non-constant
variance {heteroscedasticity}, and correlated residuals)

e Nature of error model defines a likelihood function

e Sum of model + error distribution can be used to estimate likelihood
(probability) of predicting an observation given the model

e Problem that treating multiple sources of error as if all
“measurement error’
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stationary?) structure?

Many reasons why error structures might be complex

Inconsistent observations

Effects of processing input error through model structural
error in time and space (might lead to non-stationary
correlation...)

Incommensurable observed and predicted variables

Sample from long term stationary stochastic behaviour
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Alternative Frameworks
o]

Allowing that epistemic uncertainties may not be represented
as simple statistical functions

e Informal likelihoods (no longer P(O|M) but can be used to
estimate P(M|O))

e Fuzzy methods
e Dempster-Shafer Evidence Theory

May be inefficient and qualitative = HANDLE WITH CARE!!!
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Uncertainty as a likelihood surface
in the model space

Basic requirements of a likelihood as belief

Should be higher for models that are “better”

Should be zero for models that do not give useful
results

Scaling as relative belief in a hypothesis rather than
probability

But how then best to determine weights from evidence
given epistemic uncertainties??
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A general framework for model
evaluation

1. Eliminate obviously disinformative data

2. Set up limits of acceptability (reflecting
observation error, commensurability error and input
error) priorto running the model.

3. For each model run, evaluate performance against
limits of acceptability

4. Check for error reconstruction to improve
predictions / calculate distributions of errors.
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First criterion: Event mass balance consistency (expectation that event
- runoff coefficient Q / R will be less than one)

But...difficulty of separating events
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and impact of an inconsistent event on model results might persist for
following events, gradually decaying
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running a model

Results of runoff coefficient determination for River Tyne at Station 23006 —
plotted against rainfall totals over catchment area as estimated from 5
gauges (black — range 0.3 to 0.9)
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Limits of acceptability
-

e The question that then arises within this framework is whether, for an
particular realisation of the inputs and boundary conditions, (6, |, €,

x, t) is acceptable in relation to the terms go(x,t) + ec(Ax,At, x,t). This is
equivalent to asking if the following inequality holds:

O,.in(xt) <M(6, |, g, x, t) < O, ,ox(%,t) for all O(x,t)

where O,,;,(x,t) and O, .(x,t) are acceptable limits for the prediction
of the output variables given £5(x,t) and sc(Ax,At, x,t)

e Idseally, limits of acceptability should be evaluated prior to running
the model (but note l,g;in M(6, |, g, x, t) )
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Our “sand-box” case: Palermo (IT)

e Example 1 (Distributed Input Uncertainty -
Rainfall)
e Aleatory: random metering error
e Epistemic: not considering a raingauge
e Disinformative: shifting series in time
e Example 2 (Lumped Parameter uncertainty)

e Aleatory: variability due to random factors
(accidental events, initial conditions)

e Epistemic: not directly measurable
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Palermo city centre (ltaly)
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Flooded locations: 15

Monitored flooding events: 36 in the
period 1994 - 2011
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| rainfall and flooding data

Rainfall data were collected in 7 rain gauges located inside and outside the
analysed area for all the events with a temporal resolution of 1-5 minutes.
Flooding data were collected by the Fire Brigades via remote cameras and
field reports (more than 700 reports on damaged properties).

Flooded Mean flooding Average return | Flooded Mean flooding Average return
areas depth [cm] period [yrs] areas depth [cm] period [yrs]

1 144,9 0,54 9 44,4 0,56
2 63,4 0,56 10 25,7 0,71
3 50,7 0,68 11 28,7 0,56
4 45,9 0,56 12 54,6 0,54
3) 59,9 0,56 13 43,2 0,54
6
7
8

32,2 0,56 14 38,4 0,56
28,3 0,68 15 24,6 1,5
47,0 0,99
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Our “sand-box” case: Palermo (IT)
-

e Example 3 (Damage model structure)

e Epistemic: some damage processes are not
considered or investigated

e Disinformative: some initial assumptions may be
false



Tools: Flooding 2D - 1D
mathematical model
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e The expected flood damage can be evaluated by
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an ex-ante analysis.

e Real damage data are interpolated by means of
damage functions describing the relationship
occurring between the hydraulic characteristics of
flood and the related damage
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Flood damage
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FUNCTIONS

h Flood depth [m]



.
0% <

() vesiwaemaskoe | Jncertainty inherent to
1 Centrodiricerca La.RA. B}
flood damage function

o

e Several regression laws with different level of simplification can be used
as depth-damage functions thus influencing the damage appraisal

- obtained.
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e Flooding data are often piecemeal, affected by measuring errors and
spatially aggregated. In consequence, the flood damage assessment is
usually affected by a degree of intrinsic uncertainty that cannot be

realistically eliminated
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Step 1 - Rainfall temporal resampling

12 historical rainfall time series recorded between 1993-1997
with high temporal resolution (1-3 min) by a network of 8
raingauges in the analyzed area was adopted

For each historical rainfall event, the duration was divided into n equal
time intervals ranging from 5 to 15 min with step of 1 min and for each of
these temporal windows the average intensity was evaluated.

For each historical rainfall event 11 hyetographs with a coarser temporal
resolution were obtained

According to the mass balance principle, for each time step,
the real event and the re-sampled one are characterised by
70 the same rainfall volume.
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STEP 2 - Rainfall spatial resampling
Rainfall data from some of the raingauges present in the
watershed were neglected to analyse the influence of the

- spatial rainfall aggregation on the efficiency of rainfall-runoff

71

model predictions

* The number of sampled raingauges was selected between 1 and 8 and
all possible combinations of raingauges were evaluated.

* For each combination, urban sub-catchments were linked to the closer
raingauge according to the minimum Euclidean distance criterion.

&

The total number of raingauge combinations was 255

&

The analysed spatial and temporal resolution scenarios
were in total 2805 (255xI11).
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STEP 3 — Evaluation of rainfall performance
indicators

To quantify the goodness of rainfall estimates with respect to the reference
rainfalls adopting the whole raingauge network (8 RG)

To evaluate the dependencies between model performance and accuracy in
the description of a rainfall event in time and space

BALANCE and GORE indices (Andréiassian et al,, 2001) were computed:

[ pr— \ 2

¥R, pE Ik [PE-/Pi)
BALANCE = sz GORE = 1 — —° /

w
-~

z inz '.( NFl_V—Fl}
BALANCE quantifies the overestimation (when >1) or underestimation (when
<1) of the rainfall volume in each analysed scenario.

GORE compares the sum of squared errors in the rainfall estimate in each
scenario to the temporal variance of the reference precipitation (obtained
with the maximum temporal resolution and the whole raingauge network ).
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STEP 4 — Modelling efficiency evaluation

Modelling results obtained with historical rainfall
events were compared with those achieved using

coarser estimate rainfall data

The uncertainty inherent in flood modelling results
was assessed in terms of the Nash and Sutcliff
criterion (N-S) adopted as likelihood measure within
the GLUE analysis
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Methodology application to a case study

- At first,

the mathematical model was calibrated for all 2805 considered scenarios
by defining 500 random Monte Carlo sets of parameters (rainfall = runoff
parameters and drainage system roughness) and then selecting the one
providing the highest N-S criterion computed on flooding depth:s.

Then,

the rainfall performance indicators were evaluated and compared with
model efficiency in the flood depths appraisal;

the model uncertainty was correlated to the availability of rainfall data
considering the impact of different possible combinations of a fixed
number of raingauges
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BALANCE and GORE indices vs model efficiency N-S

Comparison of rainfall indices and N-S criterion computed on the flooding
depths obtained in each of the 15 flooding locations of the watershed by
the simulations carried out for each of the 2805 considered scenario

event of 1*t December 1995

1 o 1

0.8

<
=

0.2 L

Flooding depth estimation N-S efficiency
Flooding depth estimation N-S efficiency

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2
BALANCE |-] GORE |[-]

BALANCE is higher sentitive: rainfall depth has a major impact on
flooding; a wrong estimation of rainfall can impact negatively on model
performance

0

<

The ratio between GORE and N-S is nearly linear: the model, during
calibration phase, is able to slightly compensate the wrong estimation of
/5 rainfall input obtaining a reliable estimation of the flooding depth.
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BALANCE and GORE indices vs model efficiency N-S separating
the upstream and downstream flooding areas

| | event of 1t December 1995

s UpStream
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Better rainfall knowledge generally means a better estimation of flood
depth but the uncertainty related to rainfall knowledge is still high: GORE
values equal to 0.8 can produce N-S flooding estimation criterion ranging
from 0.5 to 0.75
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Uncertainty affecting flood damage estimates

A GLUE analysis was carried out by running 500 Monte Carlo Simulations
- changing model parameters for each of the 2805 considered scenarios

To estimate total monetary flood damage depth-damage curves for

buildings and vehicles obtained by available data in the area were
used

D =867.85-h %% D =1035.70-h %!

1.000.00 €

900.00 €
+ +

800.00 € + . “llcel'tﬂilltv bands (Sth and

* The model is generally able for providing a good estimate of the measured
damage.

* Total monetary damage appraisal is in the range of *=10% around the
measured value.

* The calibration efficiency is progressively better if more rainfall data are
available but the added value of the single raingauge after the forth is not
relevant.
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analysis

The application of the Bayesian

* The dataset was divided in three parts in order to test the ability of
Bayesian uncertainty analysis to learn from available data

* The first Bayesian update starts from uniform parameter distributions

Parameters M.U. Min Max
Impervious area surface storage mm 0.5 2.0

Pervious area surface storage mm 3.5 8.5

Impervious area Manning’s roughness - 0.020 0.033
Pervious area Manning’s roughness - 0.025 0.050
Max infiltration rate (Horton) mm/h 62.0 117.2
Saturated soil infiltration rate (Horton) mm/h 12.2 22.7
Underground drainage system Manning’s roughness - 0.014 0.025
Surface channels Manning’s roughness - 0.021 0.034
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Bayesian update

The results of the first
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The results of the first
Bayesian update
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Total flood damage with power damage law
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The results of the second
Bayesian update
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The results of the second

Bayesian update
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The results of the second
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Total flood damage with power damage law
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The results of the third
Bayesian update
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Total flood damage with power damage law
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Bayesian Model Averaging (BMA)

Bayesian Model-Averaging technique looks to
@ overcome the limitations of a single model by

linearly combining a number of competing models
into a single new model forecast
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BMA infers the posterior distribution of forecasting variables by weighing

individual posterior distributions based on their probabilistic likelihood

measures, with the better performing predictions receiving higher weights
- than the worse predictions.

M = (M,,...M,)set of models considered and
A= quantity to predict
p(AlD)= ip(A\Mk,D)p(Mk D) posterior distribution
of A givke:1n data D
p(A|M,, D) posterior distribution under M,
p(M,|D) posterior model probability (weight)

All probabilities implicitly conditional on 4
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Model structure disinformation

Because BMA provides a probabilistic form of synthesis results
- among several models, the mean value of distribution can be
used as the result of multi-model forecasting.

BMA prediction (posterior mean) of A:

E[AD |= gE[A‘D,Mk]p(Mk D)

The expected BMA prediction is the average of individual
model predictions weighted by the likelihood w,, that the

individual model M,, is the optimal model on the condition of
the given data D
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BMA predictive uncertainty (posterior variance):

Reflecting data
variability

Var[A|D} = iVar[MD,MJp(Mk |D)

/

within-model variance

+§;(E[A|D,Mk]—E[A|DD2 p(M,|D)

Reflecting model — g : y
. consistency between-model variance

It represents an important uncertainty measure that better describes the
predictive uncertainty than in a non-BMA scheme where uncertainty is
estimated based only on the variance between-models and consequently

results in under-dispersive predictions
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Equivalent damage models

BMA prediction and the related uncertainty was
@8 compared to the predictions of 4 different
formulations of damage curve functions:

12 - . e linear (pOLV1)
= 10 * polynomial-2ord
(POLY2)
£ o5 » exponential (EXP)
© g « power with upper
0.2 - limit (pOWER)

0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Flooding depth [m]

¢ Measured Damage e==—=BMA ——POLY1l ——POLY2 EXP POWER
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BMA methodology requires the estimation of BMA weights and
variance

@ (410)=Y p(8lM,.D)p(M,|D)

k=1

Each model was treated by Bayesian uncertainty analysis:
- -20; D|M, ) -p(M
p(D|Mk):H 1 exp[ 20, E> Wy :p(Mk |D)= p( | k) p( k)

K
il 2700 ZP(D M, )-p(M,)
n=1

BMA weights and variance results by the application of the
Expectation-Maximization (EM) algorithm to a log-likelihood
function

K
1(6) = 1og[2wk (A M, D)]

k=1
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ring the analysis, the effect of the available data growth

was taken also into account on the model uncertainty by
seven updating of the analysed database (adding 4 events at

. time)

According to a Bayesian updating approach the model

we

ights, wy, resulted as a weighted average of its current

forecast performance weighted by the conditional
probabilities of the previous step.

0.5 +

o
w

BMA model weights
o
N

o
-

o
H
1

Starting from equal weights for
all models, the weight increases
for the better performing model
and decreases for worse models

Model weight linked to Power
function shows always the best
performances

EPOLY1 EPOLY2 WEXP ®POWER
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RMSEg\a better describes the predictive uncertainty
than in a non-BMA scheme where uncertainty is
estimated based only on the wvariance between-
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Comparison between PBIAS and RSME statistics of the expected
BMA predictions, along with that of the Simple Model Average
(SMA)

18 ~
16 -
14 -
12 -
10 +

RMSE

6 -
4 -
2 -
0
1th 2nd 3th 4th 5th 6th 7th 1th 2nd 3th 4th 5th 6th 7th
update update update update update update update update update update update update update update
EBMA ESMA EPOWER HBMA ®SMA B Best model

BMA predictions are better than that of the SMA and of best
individual predictions in terms of RSME

BMA PBIAS and RMSE are less than SMA ones

The improvement in terms of uncertainty reduction by BMA is
around 10% with respect to the best individual model
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A paradox to think about in your

owhn work...
.

e Generally, the more physical understanding that is built into
a model, the more parameter values must be specified to
run the model

e The more parameter values that cannot be estimated
precisely, the more degrees of freedom that will be available
in fitting the observations (we cannot measure effective
parameters everywhere).

e Therefore the more physical understanding that is built into
a model, the greater the uncertainty is likely to be.

o A “perfect” model with unknown parameters is no
protection against equifinality
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Maybe it is impossible to separate
out sources of error from series of
model residuals

but probably we do not need it in
practice

Epistemic sources of uncertainty result
in non-stationarity in error
characteristics;

UA hypotheses are a card tower so
watch out

Treating all uncertainties as aleatory
can lead to dramatic over-
conditioning

Non formal approaches allows for but produce equifinality and

having a glance on the performance ,;certainty estimation is only
of our models without requiring qualitative

restrictive assumptions

and over-estimation of uncertainty

Every time your modeler heart is

Limits of acceptability on model broken, a doorway cracks open to
performance can help getting rid of g world full of new beginnings, new
bad models; opportunities

Discussion and agreement regarding /it happens early and often, all the
assumptions of analysis provide a better

basis for communication of concepts



