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ADVANCES IN HYDROLOGICAL MODELING

Fig: Watershed as Hydrological system (Chow et al 1998)

Geomorphological UH; Nonlinear UH; Regionalization of UH

Image: mrcc.isws.illinois.edu

1960s

Physical interpretation 
of catchment response

Interconnected 
conceptual elements



ADVANCEMENT IN GEOSPATIAL DATA: TOPOGRAPHY

Existing Digital Elevation Models (DEM)
• Global 1-km digital raster (GTOPO30, 

1996)
• Shuttle Radar Topography Mission 

(SRTM, 2000) (National) (30m)
• National Elevation Data Set (NED) by 

USGS (National) (5m)
• LiDAR based Digital elevation models 

(landscape scale) (1m)

Fig Calhoun CZO watershed

• Rapid development in acquisition of elevation data have 
resulted in increased availability of data and 
Improvement in the digital representation of terrain.

Shuttle Radar Topography Mission
C-band interferometric synthetic aperture radar 
technique, Covers 80% of globe at 30m*30m 
(Source: Shuttle Radar Topographic Mission (SRTM) Illustration.jpg)

Moderador
Notas de la presentación
Topography plays an key role in driving spatial heterogeneity of hydrological, ecological and geomorphological processes




ADVANCEMENT IN GEOSPATIAL DATA: SOIL

POLARIS: Remapped from SSURGO using high 
resolution environmental covariates data and 
Machine learning algorithmSTATSGO

Regional/watershed scale 
(general soil map) (1km)

State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) are the two most used soil database

Harmonized World Soil 
Database v 1.2

50km County and field scale (Detailed soil map)

10m

Moderador
Notas de la presentación
Soil Survey Geographic (SSURGO) database;
STATSGO



ADVANCES IN SATELLITE RETRIEVAL :  PRECIPITATION AND SOIL MOISTURE

SMOS

TRMM

SMAP

GPM
CURRENT TIME

Soil Moisture

Variables Space 
Resolution

Time 
Resolution

SMOS (2009-Present) Top 5-cm soil moisture ~36 km 1-2 days

SMAP (2015-present) Top 5-cm soil moisture ~36 km 1-2 days

TRMM 3B42 (1997-2015) Precipitation 0.25 degree 3 hours

GPM IMERG (2014-Present) Precipitation 0.1 degree 0.5 hour

Issues: measurement error/bias, coarse time-space 
resolutions, no deeper layer soil moisture

Precipitation

SMOS

Image: NASA

SMAP

Moderador
Notas de la presentación
Note: 
The precipitation forcing and the model soil moisture state are the keys to the accuracy of hydrologic predictions.  On a local scale, when we conduct modeling for ungauged watersheds, we typically relies on global modeling precipitation and soil moisture analyses or via interpolation of nearby gauge data.   Besides, we have been moving from traditional conceptual models to distributed hydrologic models.  The latter one needs high-resolution distributed forcing and initial conditions.  Since the availability of relevant satellite missions, we are able to use those satellite data for those ungauged watersheds or for providing distributed modeling.  However, there are still issues such as measurement error and bias, coarse time-space resolution of the satellite data, and no deeper layer soil moisture.     



BIG DATA APPROACH IN HYDROLOGY

Deep learning

Evolution of big data approach in Hydrology

Spatially distributed physically 
based models (e.g., tRIBS, 
MIKE SHE)

Reliable estimation of geospatial 
data, model forcing, parameter 
estimation, state estimation (data 
assimilation) 

Machine/deep learning
(Super resolution for 
downscaling)

Hybrid Analytics 
(Combining 
machine learning 
with physically 
based models)

SMOS, TRMM, GPM, SMAP
AVHRR/MODIS
/Landsat

Moderador
Notas de la presentación
Advancement in satellite remote sensing has resulted in earth observation data with high spatial, temporal and radiometric resolution.



BIG DATA APPROACH: ADVANCES IN HYDROLOGICAL MODELING

Figure The coupled tRIBS (a-c) and plant physiology model, VEGGIE, (d) is the eco-
hydrological framework with additional modules (e) Slope stability sub model, (f) SOC 
mass balance sub model, (g) Carbon Nitrogen cycle (Lepore et al., 2013)

(e)

Soil Organic carbon mass 
balance equation

(f)

Soil carbon and nitrogen cycle(g)

Slope stability

C, N

tRIBS model 



Figure: a) Total failing area 
at different model 

resolutions, b) Box plots of 
slope values at failure for 

the five resolutions.

Figure: Effect of DEM resolution on cumulative distribution of slope a) Grid-DEM resolution, b)Irregular mesh

Figure: % of 
Basin area at 
slope greater 

than SI

IMPACT OF DEM RESOLUTION: 
PHYSICALLY BASED SLOPE STABILITY MODEL 

Sl =10°

Sl= 20°

Sl =30°

Moderador
Notas de la presentación
 irregular mesh reduces the loss of accuracy in the derived slope distribution when coarser resolutions are used;
predicted failure area decreases with resolution, but statistics of slope at failure are almost invariant



Figure: SM probability density functions at 
four time steps and three depths for the five 

resolutions. Differences are pronounced at 
t2-1082mm, t3-1082mm, t4-1512mm.

t1 t2

t3

t4

Figure: simulated SM at t2-1082mm for a)10m 
DEM and b) 70m DEM 

a) b)

Figure: Precipitation

IMPACT OF DEM RESOLUTION ON 
SIMULATED SOIL MOISTURE 

Moderador
Notas de la presentación
 at ‘steady’ state (either at dry or saturated conditions), soil moisture dynamics through the resolutions are almost invariant; in the transient, the different topography leads to slightly different SM patterns; 




a) Maximum sink scenario

b) Maximum source scenario

c) Intermediate source scenario

ΔSOC (g m-2 yr-1)ΔSOC (g m-2 yr-1)

SOC mass balance equation

tRIBS-ECO
Erosion
Carbon
Oxidation

BIG DATA APPROACH: 
TERRESTRIAL SEDIMENTATION AND CARBON CYCLE

Fig Watersheds from Luquillo CZO



BIG DATA APPROACH: ASSIMILATION OF PRECIPITATION AND 
SOIL MOISTURE INTO WRF-NOAH MODEL

Three- and four-dimensional 
Variational data assimilation (3D-
& 4D-Var:

• Control state: 𝐱𝐱
• Model background: 𝐱𝐱𝑏𝑏
• Cost of background part: 𝐽𝐽𝑏𝑏
• Cost of observation part: 𝐽𝐽𝑜𝑜

Weather Research and Forecasting 
(WRF) Model and 4D-Var

Noah land surface 
model and 1D-Var

Moderador
Notas de la presentación
Note:
A introduction of variational data assimilation and the concept of using VAR to combine model and satellite data to providing downscaled precipitation and soil moisture.  We can use precipitation DA to improve the forcing data.  We can use soil moisture DA to dynamically improves the soil moisture profile simulations.  



BIG DATA APPROACH: ASSIMILATION OF PRECIPITATION

(36 km)

(9 km)

• Assimilating upscaled 6-h 20-km NCEP 
Stage IV precipitation in the WRF 
domain D01. 

• Verifying the model precipitation at 
domain D02 against fine-scale NCEP 
Stage IV precipitation.

Lin et al. (2015) in JHM
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BIG DATA APPROACH: ASSIMILATION OF PRECIPITATION 
SELECTED HOURLY TIME SERIES

Lin et al. (2015) in JHM



BIG DATA APPROACH: ASSIMILATION OF SATELLITE SOIL MOISTURE DATA

• Assimilating SMOS soil moisture into the Noah 
LSM domain D01 in July 2013

• Verifying the hourly gridded model soil moisture 
at domain D03 against the Soil Climate Analysis 
Network gauge data

• Verifying the heat flux simulation against NLDAS

Improvement relative to 
Open loop (no DA)

Top 10-
cm SM

10-to-40-
cm SM

MAE 35% 9%

RMSE 33% 8%

Correlation 19% 25%

Lin et al. (2017) in WRR



BIG DATA APPROACH: COMBINED ASSIMILATION OF PRECIPITATION AND SOIL 
MOISTURE

• Assimilation of TRMM 3B42 
precipitation and SMOS soil moisture

• Verification of model soil moisture in 
the blue box against the hourly soil 
moisture gauge data in July 2013.

Lin et al. (2017) in MWR



PRECIPITATION RETRIEVAL: DICTIONARY BASED SHARP ALGORITHM

Different earth surface classes used in the current version of the ShARP, 
namely inland water body (In), coastal zone (c), land (l) and ocean (o). 
The classification is adopted based on the available data (version 7) of 
the PR-1C21 product, which are mapped onto a 0.05-degree regular gridExpected values of the spectral brightness temperatures for different intervals of the 

surface rainfall intensity over ocean (left panel) and land (right panel)

Dictionaries

Detection

Estimate 
(Sharp)

1B11 (TMI)

2A12 (PR) 1B11 (TMI)

Dictionaries for 4 land classes (In, 
C, I, and O)

Ardeshir M. Ebtehaj, Rafael L. Bras, Efi Foufoula-Georgiou (2014) Shrunken Locally Linear Embedding for Passive Microwave Retrieval of 
Precipitation

2A25

2A12

Surface class map



PRECIPITATION RETRIEVAL :  DICTIONARY BASED SHARP ALGORITHM

From left to right: TMI-2A12, PR-2A25 and ShARP retrievals. Top to bottom 
panels: tropical storm Fernand in 08/26/2013 (orbit No. 89874) at 05:30 
UTC, hurricane Isaac in 28/08/2012 (orbit No. 84227) at 22:12 UTC and 
typhoon Kai-takin 08/17/2012 (orbit No. 84050) at 13:35 UTC.

From left to right: TMI-2A12, PR-2A25 and ShARP retrievals. Top to bottom 
panels: hurricane Danielle in 08/29/2010 (orbit No. 72840) at 09:48 UTC; super 
typhoon Usagi in 09/21/2013 (orbit No. 90277) at 02:09 UTC; and tropical
storm Helene in 09/15/2006 (orbit No. 50338) at 14:34 UTC.

TMI-2A12 PR-2A25 ShARP TMI-2A12 PR-2A25 ShARP
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SOIL MOISTURE ACTIVE PASSIVE (SMAP)

Active Radar:           
Passive Radiometer:
Combined:               

40 km
10 km

3 km

Radiometer OnlyRadiometer + Radar
Resolution loss with radar failure:

Moderador
Notas de la presentación
In early 2015, NASA launched the Soil Moisture Active Passive (SMAP) satellite to measure global soil moisture every 2-3 days.

SMAP measures the emissivity of the surface soil layer in the L-band, which is a function of soil moisture.

The satellite contained two instruments -- an active radar and a passive radiometer – which shared one antenna. The radar was high-resolution but sensitive to irrelevant surface features, whereas the radiometer was lower-resolution but high-accuracy. Combining measurements from both instruments could produce accurate measurements at high-resolution.

After 3 months of operation, the radar component failed, leaving us with just the radiometer.




BLACK BOX SUPER-RESOLUTION METHODS

Dictionary Methods

= + +

=+ +

Low-res 
observation

High-res
estimate

Convolutional Neural Network

…

…

…

Low-res decomposition

High-res decomposition

Learned
Parametric
Function

Low-res input

High-res output

Moderador
Notas de la presentación
We can take a data-focused approach to the problem of improving the resolution of SMAP and apply modern machine learning algorithms for “super-resolution.”

These methods learn how to improve low-resolution images from thousands or millions of examples by identifying patterns in the data.

In dictionary methods, we learn a way of efficiently representing soil moisture images. We can then use this representation to improve any arbitrary example.

Neural networks are the ultimate black box machine learning method. From many examples they can learn to approximate the function that maps a low-resolution soil moisture image to a high-resolution soil moisture image. They essentially treat the problem as a high-dimensional nonlinear regression.




BLACK BOX SUPER-RESOLUTION OF SMAP

Radiometer 
Empirical

Dictionary
Learned

Dictionary
Neural 

Network
Radiometer 
+  Radar 

Training on all “complete” patches
Average ~1% improvement in MSE

Moderador
Notas de la presentación
If we train these black box methods to predict the high-resolution SMAP combined retrievals from the low-resolution radiometer retrievals, we obtain only minimal improvement. 

Why don’t these methods work? The spatial distribution of soil moisture is inherently smooth. It is much less structured than photographs or other kinds of data where these methods have been successful. 

At the same time, soil moisture is the outcome of a physical process, and is highly influenced by local land surface features such as vegetation and topography. Here, ignoring the physics and taking a pure data approach fails.



HYBRID DATA ANALYTICS METHOD

Physical models (e.g., tRIBS): Account of the soil's 
hydrological conditions, includes climatic variables to 

model terrestrial water balance

Machine learning (ML) models: 
Based on historical information

Guide/Teach ML on how 
physical system behave

Moderador
Notas de la presentación
Data-intelligent methods: suitable especially when lots of experimental data exist but there is lack of knowledge of physical behavior
Physically based models: We have a good understanding of the system, and able to describe it mathematically.
Physical based models have the limitation

In hybrid methods: the machine learning models can be guided by physically based models/ or physically based models can teach machine learning models about how physical system behaves

computational cost of the model: Physics-based model can simulate the system in detail but could be complicated and time-consuming. 




SOIL MOISTURE RETRIEVAL ALGORITHM

Soil moisture retrieval using Inversion of τ-ω model

1. ω in constant and ϒ is estimated from NDVI 
climatology

2. Estimate rp and infer soil moisture from 
Fresnel equation and a soil dielectric model

Example: Single channel algorithm

• Single channel algorithm(SCA)
• Double channel algorithm (LS inversion)(DCA) 
• Constrained multichannel algorithm (CMCA)

Moderador
Notas de la presentación
Zeroth order tau-omega model  has been used widely used in passive remote sensing of soil moisture.
Prospect constraining existing retrieval algorithms with physical bounds is explored (introduction of a new constrained multichannel algorithm)
VWC=f(NDVI) and τ=b.VWC, ϒ=exp(τsecφ)
Single channel algorithms (assume that ω in constant and ϒ is estimated from NDVI climatology)
Dual channel utilizes H-and V-polarized brightness temperature channel simultaneously.

We will be comparing the performance of single channel algorithm with constrained multichannel algorithm.




CONSTRAINED MULTICHANNEL RETRIEVAL ALGORITHM (CMCA):  
INVERSION PHYSICAL BOUNDS

Clay fraction (1KM)Soil texture (1KM) porosity(1KM)

Soil reflectivity (1KM, f=1.6 GHz)

(Miller and White, 1998)

Moderador
Notas de la presentación
1km data from Soil information for Enviornment modeling and ecosystem management (Miler and White, 1998)




TIME SERIES EXPERIMENT: RETRIEVAL WITH AND WITHOUT PHYSICAL CONSTRAIN

Soil Climate Analysis Network gauge station in Arkansas, US
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Moderador
Notas de la presentación
Rh, rv (soil reflectivity in horizontal and vertical polarization)



SOIL MOISTURE RETRIEVAL: IMPLEMENTATION FOR SMAP DATA

SMAP overpass on 06/01/2016-CMCA at 1kmSMAP overpass on 06/01/2016-SCA official NASA product at 9km



VWC RETRIEVAL: IMPLEMENTATION FOR SMAP DATA

SMAP overpass on 06/01/2016-CMCA at 1kmSMAP overpass on 06/01/2016-SCA official NASA product at 9km

Moderador
Notas de la presentación
VWC: Volumetric water content



PHYSICALLY RELEVANT FEATURES

Soil Moisture
Topography

Vegetation

Soil Features

Moderador
Notas de la presentación
Estimating a smooth field like soil moisture at high-resolution is inherently more difficult than for other types of data, because soil moisture on its own is relatively unstructured. However soil moisture has physically based relationships with many other data types, such as topography, vegetation type, and soil properties. (also precipitation)

By incorporating constraints based on known physical relationships, we can potentially estimate soil moisture at high-resolution… (connects to CMCA method, Ardeshir’s method)



Thank you!

Era of Data Rich Hydrology
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