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Objectives

The return period concept was first introduced by Fuller (1914) – who pioneered statistical flood frequency
analysis in USA – to quantify the rareness of hydrologic events (e.g. floods, droughts, etc.) that might cause huge
damages to the society and the environment.

Despite well-established in the literature, the return period concept has recently attracted renewed interest
stimulated by the need of efficiently dealing with complex processes in a changing environment.

This lecture presents the concept of return period and the related probability of failure by making use of a general
mathematical framework with the aim to:

(i) help for a better understanding of the return period formulation that is commonly adopted in practical
engineering applications;

(ii) be applied under more general conditions, i.e. by relaxing the hypotheses of stationarity and independence
usually (sometimes implicitly) assumed in practical problems to derive simple analytic formulations;

(iii) exploit all the information provided by rich (?) data sets.

 Fuller, W. (1914), Flood flows. Trans. Am. Soc. Civ. Eng., 77, 564–6172
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1.1 Basics of return period

The return period is a probabilistic concept used to measure and communicate the random occurrence of
geophysical events that may produce huge economic, social and environmental damages.

Under some regularity conditions (stationarity and independence), once the random variable (𝑍) quantifying the
event of interest is identified, with 𝑃𝑍(𝑧) = Pr{𝑍 ≤ 𝑧} its probability distribution function (cdf), the return period of
a possible dangerous value, 𝑇(𝑧) (years), is

𝑇 𝑧 ~
1

1 − 𝑃𝑍 𝑧

The threshold value that corresponds to 𝑇 is generally named as the 𝑇-year event

𝑧𝑇 = 𝑃𝑍
−1 1 −

1

𝑇

• The probability that the 𝑇-year event is exceeded is 1/𝑇 in every year, i.e. the 𝑇-year event occurs on average
every 𝑇 years.

• Although time is generally more understandable than probability to a general audience, the rationale behind
return period was often misunderstood to mean that one 𝑇-year event should occur exactly every 𝑇 year
(Stedinger et al., 1993).

 Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Frequency analysis of extreme events. In D. Maidment (Ed.), Handbook of 

hydrology (chap. 18). New York: McGraw-Hill

(1)
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1.2 Basics of probability of failure

The classical approach of risk management is that of designing hydraulic structures to control up hazardous events
to a predefined 𝑇-year event.

The level of protection (i.e. selected 𝑇 value) is determined by broad considerations of risk conditions:

• the expected damage that occurs or will be exceeded with a certain probability in a certain time period, e.g. one
year (Vogel and Castellarin, 2017).

The probability that the 𝑇-year event is exceeded is specified period of time (e.g. the design life 𝑙) that is the
probability of failure is

𝑅 𝑧, 𝑙 = 1 − 1 −
1

𝑇 𝑧

𝑙

• the probability of failure due to the 𝑇-year event reaches the non-negligible value of about 63% after 𝑇 years
(i.e., for 𝑙 = 𝑇) for large events (e.g., 𝑇 > 10 years).

 Vogel, R., & Castellarin, A. (2017). Risk, Reliability, and Return Periods and Hydrologic Design. In V. Singh (Ed.), Handbook of applied

hydrology (chap. 78). New York:McGraw-Hill.

(2)
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1.3 Return period estimation

Although the concept and application of return period are well established in the literature, estimating 𝑇 and the 𝑇-
year event is still challenging (especially in the extrapolation range).

General estimation procedure

1. Identify the mechanism(s) of system failure that determine the random event of interest, and subsequently the
random variable describing it (𝑍) (Schumann, 2017):

i. single random variable describing the hydrological load and, as a consequence, the state of the system (univariate case);

ii. joint behavior of several random variables (whose pairwise correlation is in general not negligible) that are all relevant to risk analyses
(Brunner et al., 2016)

2. Collect (or derive from observations) time series of the random variable of interest.

3. Fit a probability distribution function (a parametric or non-parametric model) to the underlying variable and
determine 𝑇(𝑧) and/or the 𝑇-year event (Coles, 2002; Gaume, 2018)

 Schumann, A. (2017). Flood safety versus remaining risks - Options and limitations of probabilistic concepts in flood management. Water

Resources Management, 31 (10), 3131-3145, doi: 10.1007/s11269-017-1700-z

 Brunner, M. I., Seibert, J., & Favre, A.-C. (2016). Bivariate return periods and their importance for flood peak and volume estimation. Wiley

Interdisciplinary Reviews: Water, 3 (6), 819-832, doi: 10.1002/wat2.1173

 Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.

 Gaume, E. (2018). Flood frequency analysis: The Bayesian choice. Wiley Interdisciplinary Reviews: Water, 5 (4), e1290. doi: 10.1002/wat2.12906



Return period in a multivariate framework

In a multivariate framework:

• the return period of system failure does not generally correspond to that of the hydrological load (e.g. of the AND
event);

• system failure should be quantified in probabilistic terms by determining the proper combination of the random
variables describing the interaction between the hydrological load and the system.

 Volpi, E., & Fiori, A. (2014). Hydraulic structures subject to bivariate hydrological loads: Return period, design, and risk assessment. Water

Resources Research(50), 885-897, doi: 10.1002/2013WR014214

When the hydrological load acting on the
system is characterized by two (or more)
random variables those can be combined
to define different types of event (e.g.,
joint occurrence: AND event etc.).

(Volpi and Fiori, 2014)
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2.1 General mathematical framework

Let's consider a discrete-time stochastic process 𝑍𝑡 that is obtained by sampling a natural process evolving in
continuous time at constant time intervals Δ𝜏 (Koutsoyiannis, 2016)

We are interested in the occurrence of events that might cause the failure of a structure or system, e.g. 𝐴𝑡 = {𝑍𝑡 >
𝑧} at time 𝑡.

𝑡
−1 0 1 𝑡 − 1 𝑡

𝐴𝑡

𝐵0

𝐵1

𝑍𝑡

𝑧

PZt
z = Pr 𝑍𝑡 ≤ 𝑧

= Pr𝐵𝑡

Pr 𝑍𝑡 > 𝑧 = Pr𝐴𝑡

−𝑡𝑒

𝐴−𝑡𝑒

present time

 Koutsoyiannis, D. (2016). Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrological Sciences Journal, 61 (2), 225-

244, doi: 10.1080/02626667.2015.10169508



2.2 General mathematical framework: Definitions

The return period is the time interval quantifying the average occurrence of the dangerous event 𝐴; it is a means of
expressing the exceedance probability of 𝐴 in terms of time units Δ𝜏, typically years

𝑇

Δ𝜏
= E 𝑋 = ෍

𝑥=1

∞

𝑥 𝑓𝑋(𝑥)

where 𝑓𝑋 𝑥 = Pr{𝑋 = 𝑥} is its probability mass function.

The probability of failure 𝑅(𝑙) is defined as the probability that a dangerous event occur in the period of time 𝑙

𝑅 𝑧, 𝑙 = Pr 𝑋 ≤ 𝑙 = ෍

𝑥=1

𝑙

𝑓𝑋(𝑥)

𝑋 may be defined as (e.g., Fernández and Salas, 1999):

(i) the waiting time to the next event;

(ii) the interrarrival time between successive events.

 Fernández, B., & Salas, J. D. (1999). Return period and risk of hydrologic events. I: mathematical formulation. Journal of Hydrologic

Engineering, 4 (4), 297-307, doi:10.1061/(ASCE)1084-0699(1999)4:4(297)9



2.3.1 General mathematical framework: waiting time, 𝑓𝑊

Probability mass function, 𝑓𝑋(𝑥)

Unconditional waiting time, 𝑊

𝑓𝑊 𝑡 = Pr 𝐵1, 𝐵2, . . 𝐴𝑡

Conditional waiting time, 𝑊|𝑡𝑒

𝑓𝑊|𝑡𝑒
𝑡 =

Pr 𝐵1, 𝐵2, . . 𝐴𝑡|𝐴−𝑡𝑒
, . . 𝐵0

𝑡
−1 0 1 𝑡 − 1 𝑡

𝐴𝑡

𝐵0

𝐵1

𝑍𝑡

𝑧

−𝑡𝑒

𝐴−𝑡𝑒

present time

𝑡
−1 0 1 𝑡 − 1 𝑡

𝐴𝑡

𝐵0

𝐵1

𝑧

−𝑡𝑒

𝐴−𝑡𝑒

waiting time, 𝑊

waiting time, 𝑊elapsed time, 𝑡𝑒
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0−1

𝐴0

2.3.2 General mathematical framework: interarrival time, 𝑓𝑁

Probability mass function, 𝑓𝑋(𝑥)

Unconditional waiting time, 𝑊

𝑓𝑊 𝑡 = Pr 𝐵1, 𝐵2, . . 𝐴𝑡

Interarrival time, 𝑁 = 𝑊|(𝑡𝑒= 0)

𝑓𝑁 𝑡 = Pr 𝐵1, 𝐵2, . . 𝐴𝑡|𝐴0

𝑡
1 𝑡 − 1 𝑡

𝐴𝑡

𝐵1

𝑍𝑡

𝑧

present time

𝑡
−1 0 1 𝑡 − 1 𝑡

𝐴𝑡

𝐴0

𝐵1

𝑧

waiting time, 𝑊

interarrival time, 𝑁elapsed time, 𝑡𝑒=0
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3.1 Stationary and independent processes: return period 𝑇

Under the common hypotheses that:

• events arise from a stationary distribution, e.g. Pr𝐵1 = Pr 𝐵 = Pr{𝑍 ≤ 𝑧} = 𝑃𝑍 𝑧

• are independent of one another, i.e. Pr 𝐵1, 𝐵2, . . 𝐴𝑡 = Pr𝐵1Pr𝐵2 … Pr𝐴𝑡 = Pr 𝐵 𝑡−1 Pr 𝐴

what has happened in the past does not influence future realizations of 𝐴; hence 𝑊 (𝑊|𝑡𝑒) and 𝑁 follow the same
geometric distribution

𝑓𝑋 𝑡 = [𝑃𝑍 𝑧 ]𝑡−1[1 − 𝑃𝑍 𝑧 ]

𝐹𝑋 𝑡 = ෍

𝑥=1

𝑡

𝑓𝑋 𝑥 = 1 − 𝑃𝑍 𝑧 𝑡

with mean:

𝑇 𝑧 =
Δ𝜏

1 − 𝑃𝑍 𝑧
(1)
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3.2 Stationary and independent processes: probability of failure 𝑅

It follows that the probability of failure is given by

𝑅 𝑧, 𝑙 = 1 − 1 −
Δ𝜏

𝑇 𝑧

𝑙/Δ𝜏

While reliability is

𝑅𝑒 = 1 − 𝑅

(Read and Vogel,2015)

(2)

 Read, L. K., & Vogel, R. M. (2015). Reliability, return periods, and risk under nonstationarity. Water Resources Research.

doi:10.1002/2015WR01708913



4.1.1 Time-dependent (stationary) processes: return period 𝑇

In many other geophysical fields of application, time-dependence has been recognized to be the rule rather than
the exception since a long time (e.g., Eichner et al., 2011)

When the independence condition is omitted 𝑊 (𝑊|𝑡𝑒 ) and 𝑁 follow different probability distributions
(Fernández and Salas, 1999):

• it is not possible to derive expressions of general validity for the probability mass functions 𝑓𝑋 𝑥 of 𝑊 (𝑊|𝑡𝑒)
and 𝑁 because the joint probabilities cannot be generally simplified, apart from a limited number of very simple
processes;

• The average waiting time (𝑇𝑊 = E[𝑊]) is affected by process persistence, while the average interarrival time
(𝑇𝑁 = E[𝑁]) is always expressed by the classical return period formula (Bunde et al., 2003; Volpi et

al., 2015)

𝑇𝑁 𝑧 =
Δ𝜏

1 − 𝑃𝑍 𝑧

 Eichner, J. F., Kantelhardt, J. W., Bunde, A., & Havlin, S. (2011). The Statistics of return intervals, maxima, and centennial events under 

the influence of long term correlation. In extremis, 3-43, Berlin Heidelberg: Springer-Verlag

 Bunde, A., Eichner, J. F., Havlin, S., & Kantelhardt, J. W. (2003). The effect of long-term correlations on the return periods of rare events. 

Physica A: Statistical Mechanics and its Applications, 330, 1(2), 1-7, doi:10.1016/j.physa.2003.08.004

 Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., & Koutsoyiannis, D. (2015). One hundred years of return period: Strengths and limitations. 

Water Resources Research(51), 1-16, doi: 10.1002/2015WR01782014



Illustrative examples
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4.1.2 Time-dependent (stationary) processes: return period 𝑇

𝑇𝑊

𝑇𝑁 = 𝑇

• as the independent case
• lower bond 𝑇𝑁 < 𝑇𝑊

𝑇

𝑍𝑡, two state Markov-dependent model, 2Mp
Pr(𝑍𝑡, 𝑍𝑡+1) = N2 𝟎, 𝟏; 𝜌

𝜌, lag-1 correlation coefficient of the parent process

increasing 𝜌
0.5 ≤ 𝜌 ≤ 0.99

𝑍𝑡, two state Markov-dependent model, 2Mp

Pr(𝑍𝑡 , 𝑍𝑡+1) = G2 𝟎, 𝟏; 𝜃𝜌

𝜌, lag-1 correlation coefficient of the parent process
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ruled by the asymptotic
dependence of the joint 
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Illustrative examples

4.1.2 Time-dependent (stationary) processes: return period 𝑇

1 5 10 50 100 500 1000
0

1
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4

10 20 30 40 50
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0.6

0.8

1.0
𝑇𝑊

𝑇

𝑍𝑡, fractionally integrated autoregressive process, FAR(1,𝐻)

Pr(𝑍𝑡, . . 𝑍𝑡+𝜏) = N𝜏 𝟎, 𝟏; 𝜌𝐻 𝜏

𝜌 = 0.75, lag-1 correlation coefficient of the parent process

𝑇

AR(1), 𝐻 = 0.5

increasing 𝐻
0.5 ≤ 𝐻 ≤ 0.9

𝜌𝐻 𝜏

𝜏

autocorrelation function
parent process

2Mp

𝑇𝑁 = 𝑇

• as independent case
• lower bond 𝑇𝑁 < 𝑇𝑊
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Illustrative examples

• Both the probability functions 𝐹𝑊 and 𝐹𝑁 are affected by the autocorrelation structure of the process

4.1.3 Time-dependent (stationary) processes: probability of failure 𝑅

𝑍𝑡, autoregressive process, AR(1)

Pr(𝑍𝑡 , . . 𝑍𝑡+𝜏) = N𝜏 𝟎, 𝟏; 𝜌 𝜏

𝜌, lag-1 correlation coefficient of the parent process
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𝐹𝑁 𝑡 ≡ 𝑅(𝑧, 𝑡) - interarrival time

𝑅[𝑧, 𝑇 𝑧 ]

𝑡

𝑇(𝑧) = 10

~0.63 (independent case)

𝑡

𝐹𝑊 𝑡 ≡ 𝑅(𝑧, 𝑡) - waiting time
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Illustrative examples

• Both the probability functions 𝐹𝑊 and 𝐹𝑁 are affected by the autocorrelation structure of the process

4.1.3 Time-dependent (stationary) processes: probability of failure 𝑅

𝑍𝑡, autoregressive process, AR(1)

Pr(𝑍𝑡 , . . 𝑍𝑡+𝜏) = N𝜏 𝟎, 𝟏; 𝜌 𝜏

𝜌, lag-1 correlation coefficient of the parent process
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Many hydro-climatological records exhibit some forms of up- or downward tendency over time (trends or local
shifts) that are ascribed to human interventions at the local and global scales.

Even if change in the observed data does not necessarily imply a non-stationary underlying process
(Koutsoyiannis and Montanari, 2015), it is often described by assuming non-stationarity.

Remarks:

• Stationarity is a prerequisite to make inference from data.

• A non-stationary framework cannot be generally inferred from the observed data alone (Koutsoyiannis, 2016) without
introducing an additional source of uncertainty, thus preventing for a practical enhancement of the credibility and accuracy of
the predicted 𝑇-year event (Serinaldi & Kilsby, 2015).

• Estimates based on historical records are typically used to extrapolate projections for planning and design purposes up to very
large values of 𝑇, by supposing that future will statistically behave as past.

• The extrapolation to the future should be done with caution and only if the future can be predicted in deterministic terms by
using additional prior physical knowledge on the process (thus reducing uncertainty).

4.2.1 Non-stationary processes: Introduction

 Koutsoyiannis, D., & Montanari, A. (2015). Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal, 

60(7-8), 2-22. doi: 10.1080/02626667.2014.959959

 Koutsoyiannis, D. (2016). Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrological Sciences Journal, 61(2), 225-

244, doi:10.1080/02626667.2015.1016950

 Serinaldi, F., & Kilsby, C. (2015). Stationarity is undead: Uncertainty dominates the distribution of extremes. Advances in Water Resources, 

77 , 17-36, doi: 10.1016/j.advwatres.2014.12.01319



4.2.2 Non-stationary (independent) processes: waiting time 𝑓𝑋(𝑥)

 Salas, J. D., & Obeysekera, J. (2014). Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. Journal 

of Hydrologic Engineering, 19 (3),554-568. doi:10.1061/(ASCE)HE.1943-5584.0000820

 Salas, J. D., Obeysekera, J., & Vogel, R. (2018). Techniques for assessing water infrastructure for nonstationary extreme events: a review. 

Hydrological Sciences Journal, 63 (3), 325-352. doi: 10.1080/02626667.2018.1426858

Let’s consider a non-stationary and independent processes, with positive or negative trend (Salas and

Obeysekera, 2014; Salas et al., 2018).

Probability mass function, 𝑓𝑋(𝑥)

Unconditional waiting time, 𝑊

𝑓𝑊 𝑡 = Pr 𝐵1, 𝐵2, . . 𝐴𝑡

= ෑ

𝑥=1

𝑡−1

Pr 𝐵𝑥 Pr 𝐴𝑡

with 𝑥 = 1,2, … , 𝑥max and where the exceedance probability Pr 𝐴𝑥 = Pr 𝑍𝑥 > 𝑧 = 1 − 𝑃𝑍𝑥
(𝑧) reaches the unity

(zero) value at 𝑥 = 𝑥max in the case of positive (negative) trend.

𝑡
−1 0 1 𝑡 − 1 𝑡

𝐴𝑡

𝐵0

𝐵1

𝑧

−𝑡𝑒

𝐴−𝑡𝑒

present time

waiting time, 𝑊

𝑍𝑡
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4.2.3 Non-stationary (independent) processes: return period 𝑇(𝑧)

 Serinaldi, F. (2015). Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 1{11. doi: 10.1007/s00477-014-0916-1

The return period 𝑇𝑊 = E[𝑊] computed at present time (i.e. 𝑡 = 0) is a constant quantity that accounts for the
variability from present time to infinity of the probability distribution on average, by simply summarizing the
average annual probability of exceedance (Serinaldi, 2015).

𝑇𝑊 𝑧 =
Δ𝜏

1 − 𝑃𝑍𝑡
𝑧

where

𝑃𝑍𝑡
𝑧 = ෍

𝑥=1

𝑥max

𝑃𝑍𝑥
𝑧

Conversely, the 𝑇-year event changes in time according to the probability distribution function 𝑃𝑍𝑡
(𝑧).

𝑧𝑇(𝑡) = 𝑃𝑍𝑡

−1 1 −
Δ𝜏

𝑇
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4.2.4 Non-stationary (independent) processes: probability of failure 𝑅

The relationship among 𝑇, 𝑅 and 𝑙 depends of the specific process (Read & Vogel, 2015).

Illustrative example

𝑍𝑡, autoregressive process, AR(1)

Pr(𝑍𝑡 , . . 𝑍𝑡+𝜏) = LN𝜏 𝜶𝒕 + 𝜷, 𝟏; 𝜌 𝜏

𝜌, lag-1 correlation coefficient of the parent process

𝐹 𝑋
(𝑙

)

𝑙 𝑙

Stationary and independent (𝛼, 𝜌 = 0)

Stationary and persistent (𝛼 = 0, 𝜌 = 0.8): waiting time, 𝑊

Stationary and persistent (𝛼 = 0, 𝜌 = 0.8): interarrival time , 𝑁

Non-stationary and independent (𝛼 = 0.05%, 𝜌 = 0): waiting time , 𝑊

𝑇(𝑧)𝑇𝑊(𝑧)

𝑅𝑡(𝑧, 𝑇)

𝑇(𝑧) 𝑇𝑊(𝑧)
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5.1 Remarks on return period and probability of failure estimation

• The problem of estimating the rareness of potentially dangerous events (i.e. 𝑍 > 𝑧) is generally solved by first
inferring a model for 𝑃𝑍(𝑧) to a stationary and independent series of observations of the random process of
interest.

• 𝑇(𝑧) and the 𝑇-year event are dynamic quantities, subject to redefinition when new observed events add to the
historical record.

• The observed time-series is generally short (covering a period of time rarely exceeding 100 years!) with severe
consequences on the reliability (accuracy and uncertainty) of the estimate of 𝑃𝑍 and 𝑇(𝑧): this especially occurs
in the extrapolation range (i.e. 𝑇 ≥ 100 years, of interest in many risk assessment problems).

• The limited length of the time-series might be due to data selection: part of the available information in the
original data-set is discarded to fulfill the stationarity and independence assumptions.

• Extending the concept of return period to non-stationary and time-dependent conditions allows exploiting all the
available information; however, solving the inference problem of fitting a non-stationary model to a series of
potentially time-dependent data requires additional efforts with respect to the stationary and independent,
traditional yet not trivial case.
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Probability distribution of annual maxima, 𝑌 = max𝑁(𝑍)

𝑃𝑌 𝑧 = 𝑃𝑧
𝑁 𝑧

 Different from that of the parent process (complete time series)

 Overestimation of return period is due to wastage of information 

5.2 Persistent processes: on data selection and return period estimation
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5.2 Persistent processes: on data selection and return period estimation

𝑍𝑡, “daily” autoregressive process, AR(1)
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6 Summary and conclusions

Recent literature works aim at extending the return period and probability of failure concepts to more general conditions,
in order to consider multivariability, non-stationarity and persistence.

Different definitions of return period are available in the literature, leading to different results when the independence or
stationarity assumptions are omitted:

• the mean interarrival time 𝑇𝑁 is not affected by the time-dependence structure of the process while mean waiting time
𝑇𝑊 is;

• the mean interarrival time is not an exhaustive measure of the probability of failure for time-dependent processes, yet it
represents a lower bound with respect to the mean waiting time for persistent processes;

• in a non-stationary framework the average waiting time 𝑇𝑊 (determined at present time) is a constant value, while the
corresponding 𝑇-year event depends explicitly on time, thus posing additional problems for decisional making.

The general framework allows exploiting all the available information provided by the observed records of data (e.g. by
exploiting the property of the mean interarrival time of being insensible to the time-dependence structure of the process)
with the aim of improving our estimates in terms of accuracy and reduced uncertainty.

The record of exceptionally extreme events is still very poor and a large uncertainty characterizes the extrapolation range.
And data rich hydrology?

Innovative approaches and new perspectives should be proposed in the broad field of risk assessment and management,
including incorporating all the available information, specifically more hydrological knowledge, into 𝑇(𝑧) and the 𝑇-year
event estimation.
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