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Some words and concepts often associated
to scaling

“ Power-laws

RAW DEFINITION:

“Scaling” and more in general “scale invariance” refer to some kind of
property which is observed/invariant across a range of scales ....

... dfter proper transformation (e.g. self-similar or self-affine)




Let us start from fractals ....what 1s 1t?

Looking at a coastal line, we can observe some
patterns which are repeated in different places!

If we make zoom in and out, we can observe
similar patterns at smaller and larger scales!

... Similarity ?? ... scale-invariance ??

i
<% “Scaling” 1s often related to “fractals”, that
. become very popular after Mandelbrot famous
@ iy paper “How Long Is the Coast of Britain?
5?@ 4 2 Statistical Self-Similarity and Fractional
%;{%? 7 ' Dimension”, Science, 1967
1 ﬂ, J
SelfE g What it happens if we measure the length of the
& Yy, ag

4 | coast line using smaller and smaller rules?

&N

The smaller the ruler, the longer the coast ...
by zooming in we see more details!



How long 1s a coastal line?

We are used to estimate the length of lines by taking a “ruler” of size ¢ and counting
the number N(0) of steps needed to move from one end of the line to the other:

* 0 =size of the ruler
* N(0) = number of steps to overlap the whole coastal line
* L(0) = N(0) 0 = estimated length of the coastal line

Take a smaller and smaller ruler ... the smaller the ruler, the longer the coast!
... by zooming, more details appear! ... put the result in a log-log plot:

4.5 ; , :
Points are very close to a straight
line with negative slope, i.e. our
40 | | | measure L(0) follows a power law:

L(8)=ad"=06"
E log L(0)=1loga-blogd

1-D

35 L L(6)=a®
D =1.52+£0.01

3.0 1 [ | | There is a range of scaling!!
-0.5 0.0 0.5 1.0 1.5 2.0

Log 0



How long 1s a coastal line?

Why our measure of the coast length increases when using smaller rulers?

For a straight line we expect N(0) =L,/ 0 .... thus: L(0) =N(©O)0=L;/0x0=L,
Similarly, if our line has some roughness, but zooming in enough no new roughness
appears, then we should expect the same result: 1.e. for 0 smaller than a certain
threshold 0, if we take half of the ruler, the number of steps will double, ... etc.,

so our estimation of the coastal length will be constant for any ruler size size 0<9,

T . Note the result for the circle!
T e ‘“’*ﬂ-\.\
8 SOUTH ATTAN CossT The circle 1s a regular line (with
\/i 3.5 CERMAN LAND. g, [ ° . —
A e iy topological dimension D =1
j& \&\B\U\T P Y
s 2|
D 3.0 .
5 T S— Coastal lines are fractals, thus
T their fractal dimension is larger
" ot (et ot St in Kitnaes than the topological dimension of
Log o a regular line!

Mandelbrot “How Long Is the Coast of Britain? Statistical
Self-Similarity and Fractional Dimension”, Science, 1967




How long 1S a coast?

Why our measure of the coast length increases when using smaller rulers?

As noticed, for regular lines we expect N(0) =L,/ 9 ... so for half o, N(0) is double!
While for a fractal line, it happens that for half o, N(0) is more than double!

... thus for a fractal line N(0) = 1/ &”

where D i1s a fractal dimension, larger than the topological dimension D=1!

A simple & practical approach:

45 "
' ' The fractal dimension can be
estimated in a log-log chart by
L the slope of the line in the range

of scale invariance:

LO)=NO®)d=~adP=2ad™D

35 L(&)=ad "

D =1.52£001 : ....or ... NO)=ad™P
Log L(0) = Log a +(1-D) Log o Log N(0) = Loga-D Log 6
3'%.5 ofo ofs 1.Io 1.|5 2.0

Log & ...Inourcase: D=1.5



Restore previous question....what 1s a fractal?

Mandelbrot tried to give some formal definitions of fractals:

“A fractal is by definition a set for which the Hausdorff-Besicovitch dimension
strictly exceeds the topological dimension” (Mandelbrot, 1982)

... some years later Mandelbrot decided to give a simpler definition...

“A fractal is a shape made of parts similar to the whole in some way” (Mandelbrot,
1986)

... There 1s not a common definition of fractal, but we can find different definitions
of fractal dimension, which represents the main property of a fractal set:

* Box-counting dimension (most popular and easy to apply)
* Hausdorff-Besicovitch dimension
e (self-)similarity dimension




Box-counting dimension Dy

Concepts of box-counting were applied by Kolmogorov when studying turbulence
in early 1930s and sometimes referred to as capacity dimension.

Box-counting dimension D, of a fractal set S C R" where R” is a n-dimensional
embedding space:
g Sp D, = lim log N(9)
6=0 Jog(1/9)
where N(0) is the minimum number of boxes/cubes/ipercubes (or circles/spheres/

iperspheres) of maximum size 0 which can entirely cover the fractal set S

= The line is embedded in a plane (R?):
5  n =2 (dimension of the embedding space)

 D,=1 (topological dimension)
* D, = fractal dimension by box-counting <n

For practical applications we look for ranges of
scale invariance in the log-log plane:

Log N(d) = - Dy Log o




Hausdorft-Besicovitch dimension D,

... I will give here a simplified definition based on the observation that the number
of cubes of side 0 needed to cover a fractal set scales as N(0) = 1/ d”

The Hausdortt-Besicovitch dimension Dy, 1s that value of d that makes the
following limit finite:

-

0 d>D,
lim H,(0)= lim N(8)8Y ={ finite d=D,
00 d<D,

where H (0) 1s the Hausdorff measure and d 1s like a testing exponent.

[t 1s straightforward to show that the condition for the above limit to be finite is
that N (0) must be scaling as N(§)=1/6"¢ , such that:

H,(8)=N(6)0" = 6™

.... more formal definitions: H, ()= minzéid where 0, < 0 thus D, < D,




Self-similarity dimension Dy

Self-similarity
Let us consider an isotropic transformation S’ = »(5) that maps points x €S into
other points x'=rx_ where r <1 is a contracting factor and x'E€ S

The set S 1s said to be self-similar with respect the transformation 7(S), if the
original set S can be entirely covered without overlapping by m(r) replies of S”

Self-similarity implies that there exists a range of scales (range of self-similarity)
where the following relation is valid:

N(r0) = m(r) N(O)
* N(rd) =number of boxes of side 70 needed to cover the entire original set S
* N(6) =number of boxes of side 0 needed to cover the entire original set S
* m(r) = number of replies S’ needed to reproduce the entire original set S

Thus, in the range of self-similarity we should observe the power law N(5) =5
Indeed substituting above N(rd) =r 0™ we obtain m(r)=r" and then ...

_ logm(r)

..the self-similarity dimension: =
log(1/r)

10



Self-affinity

Self-similar fractals are invariant under some isotropic transformations S’ = ()
where the contracting factor r <1 is a scalar!

Self-affine fractals are invariant under anisotropic transformations S’ = r(S) that
maps the original points x € § into other points x'€ S with different contracting
factor in each dimension of the embedding space and also rotation.

In general, a different number of (rotated) replies S” can be needed in each direction
to reproduce the entire original set S (r is a tensor). A simple example:

Self-similar : Self-affine




Example: the triadic Koch curve |

0 8=1 N@®)=1
1 8=1/3 N@®)=4
2 §=1/32 N(d)=42

n
n
n-=

n=k &=1/3k N(J) =4k

Box-counting dimension:
Logd=-kLog3 = k=Log(1/8)/Log 3
N(é) = 4 Log (1/6) / Log 3 >

Log N(8) = (Log4/Log3) Log (1/d)

- log N(9) _log4
-0 Jlog(1/ (5) log3
Self-similarity dimension:
r=1/3 > Log(l/r)y=Log3
m(r) =4 -2 Log m(r) = Log 4

log m(r) log 4
log(l / r) log3

D, = ~1.2628....

=1.2628....
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Example: the triadic Koch curve (cont.) |

Hausdorff-Besicovitch dimension:

Log N(d) = (Log4/Log3) Log (1/9)

N(é) ~0- (Log 4 /Log 3)

H ,(8) = N(8)8" = §¢-etoed

0 d>D,
lainol H,(0)= lémg N(8)8 =1 finite d=D,
00 d<D,

D, =Log4/Log3=1.2628...




From fractals to multifractals

Fractal geometry characterizes (by a topological point of view) sets S C
R™ through their fractal dimension and possible self-similar or self-affine
properties.

When some kind of measure is distributed on this fractal set S, we need
multifractal theory to proper describe such a system.

Fractals describe complex geometries through different scales.

Multifractals
Miltifractals describe heavy tailed probability distributions of measures th-
rough different scales, which can be distributed over a fractal set (or not,
it is not a mandatory condition).

A feature of multifractal measures is that they fluctuate from point to
point and their intensity can change a different scales (intermittency ...
which is not only a on/off process).
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Support of multifractal measures

Let S C R" be a fractal set of fractal dimension Ds where a
mass/variable/field ¢(x) is unevenly or randomly distributed.

S is said the support of our measure (the condition to be a fractal set is
not mandatory, but we keep it for generality).

Without loss of generality we assume:

@ ¢(x) is null in the complement in R" of the set S

@ the integral of ¢(x) in R" is unitary.
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Singular exponents and multifractal spectum

We can then introduce an integral measure of ¢(x) in each n-dimensional
volume B;(0) of size 0 centred in the j-th position:

pi(0) = ¢(x)dx (1)
Bi(9)

where p;(9) is then referred to as multifractal measure if we can observe
the following limit (where « are referred to as singularity exponents):

lim pi(5) ~ 8° (2)

A main feature of multifractals is that « fluctuates from point to point.
We can thus introduce a probability distribution of the volumes where the
limit (2) holds, or we can introduce the number N, (0) of volumes B;(0)
where the measure p;(9) follows the power law (2):

N (6) ~ 6= (3)

where f(«) is the multifractal spectrum.
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Partition functions

Using (2) and (3) we can evaluate the partition functions Z,(¢), i.e. the
sum of the g-order moments of our measure p;(d) in (1):

Zo(8) =) ni(6)7 ~ / §906=F(@) g ~ §7(@) (4)

where the exponent 7(q) can be derived by a saddle point integration.
Indeed, for small §, the main contribution in the above integral comes
from those o values making small the exponent qor — f(«):

r(g) =, min_[ga — () (5)

... thus for any g we nullify the derivative with respect « and obtain:

_ df (a) 6
7T Tda |y &

Multifractal measures are characterized by a non linear behaviour of
exponents 7(q) as a function of g.
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Partition functions and multifractal spectra

For any g, from (6) we can derive a relation @« = «(q) that can be
substituted in (5), and finally we obtain 7(q) as a function of the singularity
exponent « and the multifractal spectrum f(«) :

7(q) = qa(q) — fla(q)] (7)

and with some more mathematics we can obtain the singularity
exponent « and the multifractal spectrum f(«) as a function of 7(gq):

ala) = 22 ©)
flaa)] = 475 ~ 7(q) ©)

In conclusion, the two representations 7(q) and f(«) are equivalent, and
we can switch from one to the other!
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A typical multifractal spectum

Line of siope t
dim_(support u)
glSuUPP 23 70
Information dimension g=1 £la)
0]
o] Information a
dimension

Figure 17.2 Features of the multifractal spectrum—the graph of f{x) against x

df (a)

Support dimension: g =0 ; 7(0) = —Ds ; =3 ©)

=0 (i.e. f is max)

Information dimension (entropy): g =1; 7(1) =0 ; fla(1)] = a(1)
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Structure functions

Structure functions are the expected values of the g-order moments of our
integral measures (other uses mean intensity) of ¢(x) at scale §:
q

1 q
si0) =< | [ 20| 2= 5 S (10)
p(o

where < - > is an average operator on all N(J) non-overlapping n-
dimensional volumes B(¢), which are needed to completely cover the sub-
space in R" embedding our mass/variable/field ¢(x): thus N(§) ~ 6~".

It is easy to derive:

x)dx
)

Sq(8) ~ 6"67(@) = §5(a) (11)

((q) =n+7(q) (12)
.. aswell ((0) =n—Ds and ¢(1) =n
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A discrete random cascade in R with branching number 2

/“““\ N\

%an Qa3
0‘20 O‘H G3g U35 Q36 Q37
I\ I\ I\ I\
/ \ Y Y / \ Y Y AN Y
! \ ! \ ! \ ! \ ! \ ! \ ! \ ! \
I \ I \ I \ I \ I \ I \ I \ I \
L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]

Cascade starts from an initial value ag.

At each bifurcation, two son tiles with values «; , are generated by
multiplying the father value by a i.i.d. random variable 1 (generator).
The first index j is the fragmentation level, while k =0, ...,2 — 1 is the
position.

D
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Random cascades in R

Let us assume that our signal ¢(x) is generated in the interval x € [0, 1].
At j-th fragmentation level, the signal is partitioned into N(§) = 2/
intervals of side § = 1/2/, thus j = —log, 4.

The value of each cascade tile ajx = aj_q x/2 * 1 is assumed to be the
integral measure of our desired field ¢(x) at scale ¢:

(k+1)8
Qjk = / B(x)dx
k

)

Under these hypotheses, we want to determine if the partition functions
scales with 9:

Sq(0) =< [ /5 <Z>(x)dxr ~ o 65(a)

. and if the exponents ((q) are a nonlinear function of q.
In such a case the generated signal is multifractal.
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Random cascades in R

Since the generator n is a i.i.d. random variable, at each j-th fragmentation
level the expectation of the g-moment of any integral measure « is the
same regardless the position kK =0,...,2 — 1:

oqq,k = O‘Jq = agn® (13)
indeed:

;?:agfng...nJQP(nl,---,nj)dnl"'dnj: ) .
of [ dny--- [ dngnd---nfpy(m) - pi(my) = of [ nip(n)dn]’ = odi@

We want the integral / of our signal to be 1:

1 21
| = / d(x)dx = Z aj, =20 =2 agy = a2y
0 k=0
ag = (21m)
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Random cascades in R

(2n)777 | = log, 8 log, | (2m) 77|

o
o
N
Rl
—
>,
~
|
|
.
o
o
N
—

5,(8) = 5% lCP]

((q) = loga [(27)%77 ] = q(1 + log, 7) — logy 77
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.... Random cascades in R"

Now we assume that our signal ¢(x) is generated in x € [0, 1]".

At j-th fragmentation level, the signal is partitioned into N(§) = 27
n-dimensional volumes of side § = 1/2/

Imposing that the integral of ¢(x) in x € [0,1]" is 1 we obtain:

ag = (2"7)

. we can show that multifractal exponents ((q) are expected to be:

¢(q) = q(n + logy 77) — logy 9

Important note

Although previous and following results are derived by structure functions
defined through integral measures of ¢(x) at different scales, the same
scaling properties can be derived using average measures of ¢(x) through
scales. In the latter case previous structure functions must be divided by
0™ and we found a slight different expression for multifractal exponents,
but it is easy to switch from one framework to the other.
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Log-Poisson generator n

n=p
where 3 is a constant, while y is a i.i.d. random variable following a
Poisson distribution with parameter c:

Py =m) =

We can now derive any g-moment of the generator 7:

cMe=¢

m!

T =Y A el (39— 1)

m=0

7 =explc(f—1)]

... and finally a closed form for expected multifractal exponents:
q(8-1) - (87 1)
In2

By tuning only 2 parameters (c,/3) we can generate discrete random
cascades that very closely reproduce observed multifractality.

C(a)=an+c
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Introduction to space-time

rainfall downscaling problems

MOTIVATION:

There was a need to bridge the gap between the large scales
resolved by NWP models and the small scales required by
hydrological modelling.

(coupling meteorological and hydrological models working on
different space-time grid resolution)

EVIDENCE:

Rainfall fields display fluctuations in space and time that
increase as the scale of observation decreases.

METODOLOGY

Multifractal theory represents a solid base to characterize
scale-invariance properties observed in rainfall fields as well
as to develop downscaling models able to reproduce observed

statistics (e.g. multifractal cascades). R

o

AN

AN




Two questions 1n space-time
rainfall downscaling problems

Is there a relationship between space and time scales
where we can observe the same statistical properties?

@® < Self-similarity (i.e. scale isotro@
Ul

Self-affinity (i.e. scale anisotropy)

Is the probability distribution of rain rate the same in
each point/grid-cell (x,y)?

® < Space homogeneity >

or

heterogeneity (e.g., due to orography)

o

|

AN

AN




Multifractal analysis of
space-time rainfall fields

HYPOTHESES:
- space-time self-similarity (vt = A/U)
A\ = space scale linear relation

T = time scale
U = const. ratio of space and time scales

- space homogeneity

t

xl-+/1 yj+ﬂ’ tk+ﬂ/U

(M) = [dx [dy [dt i(x,y,1)
X; Vi t

Partition function & scale invariance:

S, () ={1,;, (D)) = £

1 PRPS °
(< |
o } W@,
o0 v l
= o :
[ ] | |
o (NN
RANGEOESCALE | logh
L@

>
Multifractal measures:
C(q) non-linear function of q
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Rainfall downscaling

with random cascades:
the STRAIN model

R. Deidda, R. Benzi, F. Siccardi (1999), Water Resources Research, 35
R. Deidda (2000), Water Resources Research, 36

Log-Poisson generator: 7] = o
where y 1s a Poisson distributed i.i.d. random
variable with parameter (average) c

The theoretical expectation for
multifractal exponents is:

é(q)=3q+é[(l-/3q)-q(l—/3)}

<

8@
Best fit

» procedure to

estimate ¢ & f3




GATE: partition functions |s,(4)= (s, (")=#"
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Log-log plot of fourth-order partition functions S (A ) versus A scales ranging from
Ay =4 kmto L=256 km (time scales range from 15 minutes to 16 hours).



TOGA: partition functions

S, () =(t (A )= X
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Log-log plot of third-order partition functions S;(A ) versus A scales ranging from
Ao =4 kmto L= 128 km (time scales range from 10 minutes to 5h:20").
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Estimates of multifractal exponents on
two sequences (high and low rain rate)

C@ C@
4
12 ’// 12
. // . /)/
6 / 6 ,./
4 pal ) _
ANy iyed
0

0
0 1 2 3 4 5 6 q 2 4 5 6 q

Calibration of the STRAIN model (cascade generator n = [,
where y is a Poisson distributed random variable with mean c).

The ¢ and f model parameters can be estimated fitting
sample to expected MF exponents C(q) on each sequence:

£(q)=3q+(c/n2)q(1- B)-(1- )]



Estimates of ¢ and S model parameters

Estimates of  parameters are fairly constant around the mean value = 1/e
Estimates of ¢ parameters seem to be related to large scale rain intensity I:

¢ = ¢y exp(-y]) + ¢,
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GATE: CDF of small scale rain rate i
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Cumulative Distribution Functions of small scale rainfall intensity

(resolution 4 km and 15 minutes) are plotted with solid lines.

Dashed lines represent the 90% confidence range
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Two questions 1n space-time
rainfall downscaling problems

mationship between space and m

where we can observe the same statistical properties?
Self-similarity (i.e. scale isotropy)

or
w (i.e. scale anisotropy) @/

Is the probability distribution of rain rate the same in
each point/grid-cell (x,y)?

Space homogeneity
or
heterogeneity (e.g., due to orography)

o

|

AN

AN
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Self-similarity VS Self-affinity
(scale 1sotropy) (scale anisotropy)

f

G.S.1. — Generalized Scale Invariance
(Lovejoy & Schertzer, 1985)

Scale changing operator T, A —> Ab
(scaling anisotropy exponent H) { + —» t/b(l@

TIME
M

Dynamic Scaling

(Kardar & al, 86; Czirok & al, 93; Venugopal et al, 99)
T = const -
A reconjunction; =msp | 7 =1-H

(scaling anisotropy exponent) H=0

(dinamic scaling exponent) Z =1

0
1

x = by Wﬂching number) b,=b (I
I

U=A/1t=const / / (ratio bet&ee&space and time scales) U=U®)=U, (WL)H
e
N\ \ @
“ . ‘ L e 0 ©®
()= [dx [dy Jar i(x,.0) 3 =)
X; Y 1 2 .
Sy (W) ={tt,4 () ) = 7

| RANGE OF SCALE '
! "INVARIANCE ' logh 12



Self-similarity VS Self-affinity
(scale 1sotropy) (scale anisotropy)

Power spectra of MF are power laws of frequency f, and wave-numbers f,, f, :

E(f)=/f. E(f)=f"

Estimates of H:  H,=1-s,/s; or Hy=1-s/s,

Estimates of Z: Z =sJ/s,  oOr Z,=s/s,
log E(f) o By tog BO s
, K C e K. , A - o= By
NS-‘ — e - Ry N =6~ B
1 \ﬁ.: ) N?;N)
\g’:\ Y oMo
T :Qzﬁa‘a% s . <S$ \%
S.>S O | X t 1
X t o ’%Q? 0 &
A H, >0 S
H <0 NN X R
\‘: -1 5805
2 A R O N
ZX > 1 o ZX < 1
: 2
-30.0 0.i5 10 15 20 55 log £ 0.0 0.5 1.0 15 2.0 2.5 log f

For self-similar measures we expect H=0orZ =1 | 3




Self-similarity VS Self-affinity

Dynamic scaling exponents Z estimated on 102 TOGA-COARE events

Z,=s/Js, or Z,=s]s,
=0 «—— Z=1 - > 1=+ 10§Z=-oo - > log Z=0 log Z =+
25 i H H i 2 : : : : : i
HZ) §.>S., #(log Zx) 5. <S§ 5. > §,
15 15
a1 0
10 10 N
S4rqe pr— : — :
SEST 0
ol 11 = = [ —
I I LY TLNYIYATR R 0 T
ST SIS RSTITSILESSTLEER S ¢ § 33 s s s3I
SIS I T I ITITAIIT v S % ¥ S 3 8 a3 ¥ » A
~ S T 9 9 )
Sy S S, H, H, Z, Z,

1.38 1.31 1.37 | -0.21 | -0.20 | 1.21 1.20

| For self-similar measures we expect H=0orZ =1 (i.e. log Z =0)

More details in: Deidda, Badas, Piga (2004). Space-time scaling in high intensity TOGA-COARE storms,

Water Resources Research, 40
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Two questions 1n space-time
rainfall downscaling problems

Is there a relationship between space and time scales
where we can observe the same statistical properties?

Self-similarity (i.e. scale isotropy)
or
Self-affinity (i.e. scale anisotropy)

A‘Sﬂqe/pr—objﬂllly distribution of rain rate the same in
each point/grid-cell (x,y)?

Space homogeneity
or
heterogeneity (e.g., due to orography)

o

|

AN

S~ ____

AN

15



Second question:
Is the probability distribution of rain rate
the same in each point/grid-cell (x,y)?

» Yes: spatial homogeneity
(examples: oceanic rainfall, such as GATE, TOGA-COARE)

Multifractal models based on cascades with i.i.d. random
generators (like the STRAIN model) can be applied.

No, weak spatial heterogeneity that is only due to a different average of

rainfall intensity from point to point:
We can multiply a random cascade by a modulating function E(x,y)

g(xay) =i(x9y9t)

* No, strong spatial heterogeneity: the multifractal behaviour changes locally.

The i.i.d. hypothesis for the random generator 1 cannot be assumed.
16



D Dominio A %
- . :

.......... .21 1 Dominio B

Rain rate modulating

function &(x,y)
1
— [ i(x, y,t)dt
E(x,y) =1 7

I = large scale mean rain rate
(average on a time period 7' = 6 hours,
and on a regional domain in space)

To filter out single event variability,
we assume as modulating function
the average <E> on a great number of events.

A locally conditioned field is thus:

i(x 1) = <5(x,y)> io(x.).1)
where i, 1s homogeneous in space.

» Analysis on single rain-gauge signals

* Analysis on gridded rain-gauges (L=103km)

17
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Estimates of modulating function &(x,y)

0 200 400 600 800 1000 1200 1400
Z(m)

Rain-gauges: a = 0.61/1000
794 events with duration T=6 hours

0 200 400 600 800 1000

1200 1400
Z(m)

Gridded rain-gauges: o = 0.65/1000
806 events with duration T=6 hours

E(x,y)=a z(x,y) +b

where b=1-a<z>,

Y

18



A sensitivity analysis on the slopes a

1000 :
/8 S — R L. R — E—

0.8 Jor — SRS S S— — S—

0.7 4

0.6
o5
19 N O IS T T N N
05 e
15 S R U U N S SO

0.1 Jro e — S DU S S— —

0.0 : : : : : : :
000 025 050 075 100 125 150 175  2.00
I(mm/h)

Estimates of a slopes versus mean large-scale rain rate I in classes of events
» Continuous line: all the 806 events

» Circles: 4 classes of about 200 events

* Squares: 8 classes of about 100 events

a. slopes are independent on the large-scale rain rate I
Large variability in the estimates of o in small classes (squares)
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MF analysis on gridded rain-gauges

e
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Scale invariance analysis:
A=13 km +104 km

T =45 min + 6 hours

70 events on A domain
68 events on B domain
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More details in: Badas, Deidda, Piga (2006). Modulation of homogeneous space-time rainfall cascades

to account for orographic influences, Natural Hazards and Earth System Sciences, 6.

8.0
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