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Some words and concepts often associated 
to scaling …. 

Scaling 

Self-similarity 

Multifractals Fractals 

Self-affinity 

Dimensions 

Intermittency 

RAW DEFINITION: 
“Scaling” and more in general “scale invariance” refer to some kind of 
property which is observed/invariant across a range of scales …. 
…. after proper transformation (e.g. self-similar or self-affine) 

Power-laws 
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Let us start from fractals ….what is it? 
c. 2. I  .  THE Coasr op NoRway

ne 2.1: The coast of the southern part of Norway. The outl ine wasI from an atlas and digitized at about 1g0A; 1200 pi*"ir. Th;;;";r"n,l icated has a spacing of 6 - b0 k;.

Looking at a coastal line, we can observe some 
patterns which are repeated in different places! 
If we make zoom in and out, we can observe 
similar patterns at smaller and larger scales! 
 

… similarity ?? … scale-invariance ??  
 
“Scaling” is often related to “fractals”, that 
become very popular after Mandelbrot famous 
paper “How Long Is the Coast of Britain? 
Statistical Self-Similarity and Fractional 
Dimension”, Science, 1967 

What it happens if we measure the length of the 
coast line using smaller and smaller rules? 
 
The smaller the ruler, the longer the coast … 
by zooming in we see more details! 
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Points are very close to a straight 
line with negative slope, i.e. our 
measure L(δ) follows a power law: 
 
 
 

 
There is a range of scaling!!   
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How long is a coastal line? 
We are used to estimate the length of lines by taking a “ruler” of size δ and counting 
the number N(δ) of steps needed to move from one end of the line to the other: 
•  δ = size of the ruler 
•  N(δ) = number of steps to overlap the whole coastal line 
•  L(δ) = N(δ) δ = estimated length of the coastal line  

Take a smaller and smaller ruler … the smaller the ruler, the longer the coast! 
… by zooming, more details appear! … put the result in a log-log plot: 

L(δ) = aδ−b ≈ δ−b

Lo
g 

L(
δ)

 

Log δ  

logL(δ) = loga− b logδ



 
 
 
 
 
 
 
 
 
Mandelbrot “How Long Is the Coast of Britain? Statistical 
Self-Similarity and Fractional Dimension”, Science, 1967  

Why our measure of the coast length increases when using smaller rulers? 

5 

How long is a coastal line? 

For a straight line we expect N(δ) = LT / δ …. thus: L(δ) = N(δ) δ = LT / δ x δ = LT 
Similarly, if our line has some roughness, but zooming in enough no new roughness 
appears, then we should expect the same result: i.e. for δ smaller than a certain 
threshold δ0, if we take half of the ruler, the number of steps will double, … etc.,   
so our estimation of the coastal length will be constant for any ruler size size δ<δ0       

Note the result for the circle! 
 
The circle is a regular line (with 
topological dimension DT = 1) 
 
Coastal lines are fractals, thus 
their fractal dimension is larger 
than the topological dimension of 
a regular line!  
 

Lo
g 

L(
δ)

 

Log δ  



Why our measure of the coast length increases when using smaller rulers? 
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How long is a coast? 

As noticed, for regular lines we expect N(δ) = LT / δ … so for half δ, N(δ) is double! 
While for a fractal line, it happens that for half δ, N(δ) is more than  double! 
… thus for a fractal line N(δ) ≈ 1 / δD 
where D is a fractal dimension, larger than the topological dimension DT=1! 
 
 A simple & practical approach: 

The fractal dimension can be 
estimated in a log-log chart by 
the slope of the line in the range 
of scale invariance: 
 

L(δ) ≈ N(δ) δ ≈ a δ-D δ = a δ1-D 
 

….or … N(δ) ≈ a δ-D  

Log N(δ) ≈ Log a –D Log δ  

 
…in our case: D = 1.5 
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Log δ  

Log L(δ) ≈ Log a +(1-D) Log δ 
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Restore previous question….what is a fractal? 

…There is not a common definition of fractal, but we can find different definitions 
of fractal dimension, which represents the main property of a fractal set: 
•  Box-counting dimension (most popular and easy to apply) 
•  Hausdorff-Besicovitch dimension 
•  (self-)similarity dimension 

Mandelbrot tried to give some formal definitions of fractals: 
 
“A fractal is by definition a set for which the Hausdorff-Besicovitch dimension 
strictly exceeds the topological dimension” (Mandelbrot, 1982)  
 
… some years later Mandelbrot decided to give a simpler definition… 
 
“A fractal is a shape made of parts similar to the whole in some way” (Mandelbrot, 
1986)  
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Box-counting dimension DB 

Box-counting dimension DB of a fractal set             where Rn is a n-dimensional 
embedding space: 
 
where N(δ) is the minimum number of boxes/cubes/ipercubes (or circles/spheres/
iperspheres) of maximum size δ which can entirely cover the fractal set S 

Concepts of box-counting were applied by Kolmogorov when studying turbulence 
in early 1930s and sometimes referred to as capacity dimension. 
    

S ⊂ Rn

DB = limδ→0
logN(δ)
log(1 /δ)

c. 2. I  .  THE Coasr op NoRway

ne 2.1: The coast of the southern part of Norway. The outl ine wasI from an atlas and digitized at about 1g0A; 1200 pi*"ir. Th;;;";r"n,l icated has a spacing of 6 - b0 k;.

The line is embedded in a plane (R2): 
•  n = 2 (dimension of the embedding space) 
•  DT = 1 (topological dimension)  
•  DB = fractal dimension by box-counting <n 
 
For practical applications we look for ranges of 

scale invariance in the log-log plane: 
Log N(δ) ≈ - DB Log δ  
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Hausdorff-Besicovitch dimension DH 

The Hausdorff-Besicovitch dimension DH is that value of d that makes the 
following limit finite: 
 
 
 
 
where Hd(δ) is the Hausdorff measure and d is like a testing exponent. 
It is straightforward to show that the condition for the above limit to be finite is 
that N (δ) must be scaling as                        , such that: 

… I will give here a simplified definition based on the observation that the number 
of cubes of side δ needed to cover a fractal set scales as N(δ) ≈ 1 / δD 

lim
δ→0

Hd (δ) = limδ→0 N(δ)δ
d =

0 d > DH

finite d = DH

∞ d < DH

⎧

⎨
⎪

⎩
⎪
⎪

…. more formal definitions:                                where δi < δ thus DH ≤ DB 
 

N(δ) ≈1/δDB

Hd (δ) = N(δ)δ
d ≈ δ (d−DB )

Hd (δ) =min δi
d

i
∑



10 

Self-similarity dimension DS 

Self-similarity implies that there exists a range of scales (range of self-similarity) 
where the following relation is valid: 

N(rδ) = m(r) N(δ)  
•  N(rδ) = number of boxes of side rδ needed to cover the entire original set S 
•  N(δ) = number of boxes of side δ needed to cover the entire original set S 
•  m(r) = number of replies S’ needed to reproduce the entire original set S 

Thus, in the range of self-similarity we should observe the power law 
Indeed substituting above                            we obtain                    and then … 
 
..the self-similarity dimension:   

Self-similarity 
Let us consider an isotropic transformation S’ = r(S) that maps points           into  
other points            , where  r < 1 is a contracting factor  and 
The set S is said to be self-similar with respect the transformation r(S), if the 
original set S can be entirely covered without overlapping by m(r) replies of S’   

x ∈ S
x ' = rx x '∈ S

N(δ) ≈ δ−DS
N(rδ) ≈ r−DSδ−DS m(r) ≈ r−DS

DS =
logm(r)
log(1 / r)
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Self-affinity 

Self-affine fractals are invariant under anisotropic transformations S’ = r(S) that 
maps the original points           into other points             with different contracting 
factor in each dimension of the embedding space and also rotation. 
 
In general, a different number of (rotated) replies S’ can be needed in each direction 

to reproduce the entire original set S (r is a tensor). A simple example:  
 

Self-similar fractals are invariant under some isotropic transformations S’ = r(S) 
where the contracting factor r < 1 is a scalar! 

x ∈ S x '∈ S

Self-similar 
 

 

Self-affine 
 

 



12 

Example: the triadic Koch curve 
n = 0    δ = 1       N(δ) = 1 
n = 1    δ = 1/3    N(δ) = 4 
n = 2    δ = 1/32   N(δ) = 42 
 
n = k    δ = 1/3k   N(δ) = 4k  
Box-counting dimension: 
Log δ = -k Log 3  à  k = Log(1/δ) / Log 3 
N(δ) = 4 Log (1/δ) / Log 3 à   
Log N(δ)  = (Log 4 / Log 3) Log (1/δ)     
 
 
 
 

Self-similarity dimension: 
r = 1/3     à Log (1/r) = Log 3 
m(r) = 4   à Log m(r) = Log 4 
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Example: the triadic Koch curve (cont.) 
Hausdorff-Besicovitch dimension: 
 
Log N(δ)  = (Log 4 / Log 3) Log (1/δ)  
 
N(δ) ≈ δ - (Log 4 / Log 3)  

 
 
 
 
 
 
 

DH  = Log 4 / Log 3 = 1.2628… 
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From fractals to multifractals

Fractal geometry characterizes (by a topological point of view) sets S ⊂
Rn through their fractal dimension and possible self-similar or self-affine
properties.
When some kind of measure is distributed on this fractal set S , we need
multifractal theory to proper describe such a system.

Fractals

Fractals describe complex geometries through different scales.

Multifractals

Miltifractals describe heavy tailed probability distributions of measures th-
rough different scales, which can be distributed over a fractal set (or not,
it is not a mandatory condition).
A feature of multifractal measures is that they fluctuate from point to
point and their intensity can change a different scales (intermittency ...
which is not only a on/off process).

PhD Winter School DATA RICH HYDROLOGY - 2019 R. Deidda - Multifractals ( 1 / 13 )



Support of multifractal measures

Let S ⊂ Rn be a fractal set of fractal dimension DS where a
mass/variable/field φ(x) is unevenly or randomly distributed.
S is said the support of our measure (the condition to be a fractal set is
not mandatory, but we keep it for generality).

Without loss of generality we assume:

φ(x) is null in the complement in Rn of the set S

the integral of φ(x) in Rn is unitary.
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Singular exponents and multifractal spectum

We can then introduce an integral measure of φ(x) in each n-dimensional
volume Bi (δ) of size δ centred in the i-th position:

µi (δ) =

∫
Bi (δ)

φ(x)dx (1)

where µi (δ) is then referred to as multifractal measure if we can observe
the following limit (where α are referred to as singularity exponents):

lim
δ→0

µi (δ) ∼ δα (2)

A main feature of multifractals is that α fluctuates from point to point.
We can thus introduce a probability distribution of the volumes where the
limit (2) holds, or we can introduce the number Nα(δ) of volumes Bi (δ)
where the measure µi (δ) follows the power law (2):

Nα(δ) ∼ δ−f (α) (3)

where f (α) is the multifractal spectrum.
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Partition functions

Using (2) and (3) we can evaluate the partition functions Zq(δ), i.e. the
sum of the q-order moments of our measure µi (δ) in (1):

Zq(δ) =
∑
i

µi (δ)q ∼
∫
δqαδ−f (α)dα ∼ δτ(q) (4)

where the exponent τ(q) can be derived by a saddle point integration.
Indeed, for small δ, the main contribution in the above integral comes
from those α values making small the exponent qα− f (α):

τ(q) = min
0<α<∞

[qα− f (α)] (5)

... thus for any q we nullify the derivative with respect α and obtain:

q =
df (α)

dα

∣∣∣∣
α(q)

(6)

Multifractal measures are characterized by a non linear behaviour of
exponents τ(q) as a function of q.
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Partition functions and multifractal spectra

For any q, from (6) we can derive a relation α = α(q) that can be
substituted in (5), and finally we obtain τ(q) as a function of the singularity
exponent α and the multifractal spectrum f (α) :

τ(q) = qα(q)− f [α(q)] (7)

.... and with some more mathematics we can obtain the singularity
exponent α and the multifractal spectrum f (α) as a function of τ(q):

α(q) =
dτ(q)

dq
(8)

f [α(q)] = q
dτ(q)

dq
− τ(q) (9)

In conclusion, the two representations τ(q) and f (α) are equivalent, and
we can switch from one to the other!
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A typical multifractal spectum

Support dimension: q = 0 ; τ(0) = −DS ; df (α)
dα

∣∣∣
α(0)

= 0 (i.e. f is max)

Information dimension (entropy): q = 1 ; τ(1) = 0 ; f [α(1)] = α(1)
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Structure functions

Structure functions are the expected values of the q-order moments of our
integral measures (other uses mean intensity) of φ(x) at scale δ:

Sq(δ) =<


∫
B(δ)

φ(x)dx︸ ︷︷ ︸
µ(δ)


q

>=
1

N(δ)

∑
i

µi (δ)q (10)

where < · > is an average operator on all N(δ) non-overlapping n-
dimensional volumes B(δ), which are needed to completely cover the sub-
space in Rn embedding our mass/variable/field φ(x): thus N(δ) ∼ δ−n.
It is easy to derive:

Sq(δ) ∼ δnδτ(q) = δζ(q) (11)

ζ(q) = n + τ(q) (12)

... as well ζ(0) = n − DS and ζ(1) = n
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A discrete random cascade in R with branching number 2

_0,0       

_1,0       _1,1       

_2,0       _2,1       _2,2       _2,3       

_3,0       _3,1       _3,2       _3,3       _3,4       _3,5       _3,6       _3,7       

Cascade starts from an initial value α0.
At each bifurcation, two son tiles with values αj ,k are generated by
multiplying the father value by a i.i.d. random variable η (generator).
The first index j is the fragmentation level, while k = 0, ..., 2j − 1 is the
position.
Note that other integer branching numbers (3,4.,5 ...) can be used.

PhD Winter School DATA RICH HYDROLOGY - 2019 R. Deidda - Multifractals ( 8 / 13 )



Random cascades in R

Let us assume that our signal φ(x) is generated in the interval x ∈ [0, 1].
At j-th fragmentation level, the signal is partitioned into N(δ) = 2j

intervals of side δ = 1/2j , thus j = − log2 δ.
The value of each cascade tile αj ,k = αj−1,k/2 ∗ η is assumed to be the
integral measure of our desired field φ(x) at scale δ:

αj ,k =

∫ (k+1)δ

kδ
φ(x)dx

Under these hypotheses, we want to determine if the partition functions
scales with δ:

Sq(δ) =<

[∫
δ
φ(x)dx

]q
>∼ δζ(q)

... and if the exponents ζ(q) are a nonlinear function of q.
In such a case the generated signal is multifractal.
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Random cascades in R

Since the generator η is a i.i.d. random variable, at each j-th fragmentation
level the expectation of the q-moment of any integral measure α is the
same regardless the position k = 0, ..., 2j − 1:

αq
j ,k = αq

j = αq
0η

qj (13)
indeed:

αq
j = αq

0

∫
ηq1 · · · η

q
j p(η1, · · · , ηj)dη1 · · · dηj =

αq
0

∫
dη1 · · ·

∫
dηjη

q
1 · · · η

q
j p1(η1) · · · pj(ηj) = αq

0

[∫
ηqp(η)dη

]j
= αq

0η
qj

We want the integral I of our signal to be 1:

I =

∫ 1

0
φ(x)dx =

2j−1∑
k=0

αj ,k = 2jαj = 2jα0η
j = α0(2η)j

α0 = (2η)−j
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Random cascades in R

Sq(δ) =<

[∫
δ
φ(x)dx

]q
>= αq

j = αq
0η

qj = (2η)−jqηq
j

=
[
(2η)qηq

−1
]−j

log2 Sq(δ) = −j log2

[
(2η)qηq

−1
]

= log2 δ log2

[
(2η)qηq

−1
]

Sq(δ) = δ
log2

[
(2η)qηq

−1
]

ζ(q) = log2

[
(2η)qηq

−1
]

= q(1 + log2 η)− log2 η
q
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.... Random cascades in Rn

Now we assume that our signal φ(x) is generated in x ∈ [0, 1]n.
At j-th fragmentation level, the signal is partitioned into N(δ) = 2nj

n-dimensional volumes of side δ = 1/2j

Imposing that the integral of φ(x) in x ∈ [0, 1]n is 1 we obtain:

α0 = (2nη)−j

... we can show that multifractal exponents ζ(q) are expected to be:

ζ(q) = q(n + log2 η)− log2 η
q

Important note

Although previous and following results are derived by structure functions
defined through integral measures of φ(x) at different scales, the same
scaling properties can be derived using average measures of φ(x) through
scales. In the latter case previous structure functions must be divided by
δn and we found a slight different expression for multifractal exponents,
but it is easy to switch from one framework to the other.
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Log-Poisson generator η

η = βy

where β is a constant, while y is a i.i.d. random variable following a
Poisson distribution with parameter c :

P(y = m) =
cme−c

m!

We can now derive any q-moment of the generator η:

ηq = βqy =
∞∑

m=0

βqm
cme−c

m!
= exp [c (βq − 1)]

η = exp [c (β − 1)]

... and finally a closed form for expected multifractal exponents:

ζ(q) = qn + c
q (β − 1)− (βq − 1)

ln 2

By tuning only 2 parameters (c , β) we can generate discrete random
cascades that very closely reproduce observed multifractality.
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Introduction to space-time 
rainfall downscaling problems 

MOTIVATION: 
There was a need to bridge the gap between the large scales 
resolved by NWP models and the small scales required by 
hydrological modelling. 
(coupling meteorological and hydrological models working on 
different space-time grid resolution) 
 
EVIDENCE: 
Rainfall fields display fluctuations in space and time that 
increase as the scale of observation decreases. 
 
METODOLOGY 
Multifractal theory represents a solid base to characterize 
scale-invariance properties observed in rainfall fields as well 
as to develop downscaling models able to reproduce observed 
statistics (e.g. multifractal cascades). 
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Two questions in space-time 
rainfall downscaling problems 

Is there a relationship between space and time scales 
where we can observe the same statistical properties? 
Self-similarity (i.e. scale isotropy) 

  or  
Self-affinity (i.e. scale anisotropy) 

Is the probability distribution of rain rate the same in 
each point/grid-cell (x,y)? 
Space homogeneity 

  or  
heterogeneity  (e.g., due to orography) 
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Multifractal analysis of  
space-time rainfall fields  

HYPOTHESES:  
-  space-time self-similarity (τ = λ/U) 

  λ = space scale                  linear relation 
  τ = time scale 
  U = const. ratio of space and time scales 

-  space homogeneity 
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Partition function & scale invariance:  
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Multifractal measures:  
 ζ(q) non-linear function of q 
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Rainfall downscaling 
with random cascades: 

the STRAIN model 
R. Deidda, R. Benzi, F. Siccardi (1999), Water Resources Research, 35  

R. Deidda (2000), Water Resources Research, 36 
Log-Poisson generator:  yβη =
where y is a Poisson distributed i.i.d. random 
variable with parameter (average) c 
The theoretical expectation for  
multifractal exponents is: 

( ) ( ) ( )[ ]ββζ −−−+= 11
2ln

3 qcqq q

Best fit  
procedure to 
estimate c & β  
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GATE: partition functions  )(
,, )()( qq
kjiqS

ζλλµλ ≈=

Log-log plot of fourth-order partition functions S4(λ ) versus λ scales ranging from 
λ0 = 4 km to L = 256 km  (time scales range from 15 minutes to 16 hours). 
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TOGA: partition functions  )(
,, )()( qq
kjiqS
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Log-log plot of third-order partition functions S3(λ ) versus λ scales ranging from 
λ0 = 4 km to L = 128 km  (time scales range from 10 minutes to 5h:20’). 
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Estimates of multifractal exponents on 
two sequences (high and low rain rate)   

The c and β model parameters can be estimated fitting  
sample to expected MF exponents ζ(q) on each sequence: 

 
( ) ( ) ( )[ ]qqcqq ββζ −−−+= 112ln/3)(

Calibration of the STRAIN model (cascade generator η = βy, 
where y is a Poisson distributed random variable with mean c). 
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Estimates of c and β model parameters 
Estimates of β parameters are fairly constant around the mean value β = 1/e 
Estimates of c parameters seem to be related to large scale rain intensity I: 

c = c0 exp(-γI) + c∞ 
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GATE: CDF of small scale rain rate i 

Cumulative Distribution Functions of small scale rainfall intensity  
(resolution 4 km and 15 minutes) are plotted with solid lines. 

Dashed lines represent the 90% confidence range 
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Two questions in space-time 
rainfall downscaling problems 

Is there a relationship between space and time scales 
where we can observe the same statistical properties? 
Self-similarity (i.e. scale isotropy) 

  or  
Self-affinity (i.e. scale anisotropy) 

Is the probability distribution of rain rate the same in 
each point/grid-cell (x,y)? 
Space homogeneity 

  or  
heterogeneity  (e.g., due to orography) 
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G.S.I. – Generalized Scale Invariance             
(Lovejoy & Schertzer, 1985) 

    Scale changing operator Tb 
(scaling anisotropy exponent H) 

λ          λ/b 
τ          τ/b(1-H) 

 Self-similarity            vs              Self-affinity 
(scale isotropy)                       (scale anisotropy) 

{ 
Dynamic Scaling                                           

(Kardar & al, 86; Czirok & al, 93; Venugopal et al, 99) 
 τ = const · λZ 

                         
Z = 1-H A reconjunction: 

H = 0 (scaling anisotropy exponent) H ≠ 0 

Z = 1 (dinamic scaling exponent) Z ≠ 1 

bx = bt (branching number) bt = bx
(1-H) 

U = λ / τ = const (ratio between space and time scales) U = U(λ) = UL(λ/L)H 
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   Self-similarity        vs           Self-affinity 
  (scale isotropy)                 (scale anisotropy) 

Power spectra of MF are power laws of frequency ft and wave-numbers fx, fy : 

ts
tt ffE −≈)( xs

xx ffE −≈)( ys
yy ffE −≈)(

Estimates of H:      Hx = 1 – sx/st    or    Hy = 1 – sy/st  

Estimates of Z:          Zx = sx/st       or        Zy = sy/st  

sx > st 

Hx < 0 

Zx > 1  

sx < st 

Hx > 0 

Zx < 1  

For self-similar measures we expect  H = 0 or Z = 1 
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   Self-similarity        vs           Self-affinity 

sx sy st Hx Hy Zx Zy LogZx LogZy 

1.38 1.31 1.37 -0.21 -0.20 1.21 1.20 0.05 0.00 

Dynamic scaling exponents Z estimated on 102 TOGA-COARE events                          
Zx = sx/st       or        Zy = sy/st  

For self-similar measures we expect  H = 0 or Z = 1 (i.e. log Z = 0) 

More details in: Deidda, Badas, Piga (2004). Space-time scaling in high intensity TOGA-COARE storms,   
       Water Resources Research, 40 

sx > st sx > st 

sx < st 

sx < st 
Z = 0 Z = 1 Z = +∞ log Z = +∞ log Z = 0 log Z = -∞ 
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Two questions in space-time 
rainfall downscaling problems 

Is there a relationship between space and time scales 
where we can observe the same statistical properties? 
Self-similarity (i.e. scale isotropy) 

  or  
Self-affinity (i.e. scale anisotropy) 

Is the probability distribution of rain rate the same in 
each point/grid-cell (x,y)? 
Space homogeneity 

  or  
heterogeneity  (e.g., due to orography) 
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Second question: 
Is the probability distribution of rain rate  

the same in each point/grid-cell (x,y)? 

•  Yes: spatial homogeneity 
 (examples: oceanic rainfall, such as GATE, TOGA-COARE)  
 Multifractal models based on cascades with i.i.d. random   
 generators (like the STRAIN model) can be applied. 
  

),,(),( tyxiyx =ξ

•  No, weak spatial heterogeneity that is only due to a different average of 
rainfall intensity from point to point: 
 We can multiply a random cascade by a modulating function ξ(x,y) 

•  No, strong spatial heterogeneity: the multifractal behaviour changes locally. 
  The i.i.d. hypothesis for the random generator η cannot be assumed.  
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Rain rate modulating 
function ξ(x,y) 

I = large scale mean rain rate  
 (average on a time period T = 6 hours, 
 and on a regional domain in space) 

 
To filter out single event variability,  
we assume as modulating function 
the average  <ξ> on a great number of events. 
 
A locally conditioned field is thus: 

i(x,y,t) = <ξ(x,y)> i0(x,y,t)  
where i0 is homogeneous in space. 
 
•  Analysis on single rain-gauge signals 
•  Analysis on gridded rain-gauges (L=103km) 

I

dttyxi
Tyx
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∫
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Estimates of modulating function ξ(x,y) 

Rain-gauges: α = 0.61/1000 
794 events with duration T=6 hours 

Gridded rain-gauges: α = 0.65/1000 
806 events with duration T=6 hours 

yxzbbyxzyx ,1where),(),( ><−=+= ααξ
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A sensitivity analysis on the slopes α 

Estimates of α slopes versus mean large-scale rain rate I in classes of events 
•  Continuous line: all the 806 events 
•  Circles: 4 classes of about 200 events 
•  Squares: 8 classes of about 100 events 
α slopes are independent on the large-scale rain rate I 
Large variability in the estimates of α in small classes (squares) 
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MF analysis on gridded rain-gauges  
Scale invariance analysis: 
λ = 13 km ÷104 km 
τ = 45 min ÷ 6 hours 
•  70 events on A domain 
•  68 events on B domain 

)(
,, )()( qq
kjiqS

ζλλµλ ≈=

More details in: Badas, Deidda, Piga (2006). Modulation of homogeneous space-time rainfall cascades 
       to account for orographic influences, Natural Hazards and Earth System Sciences, 6. 
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